0‘>‘.f

4

inghigll yla

DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

A web-based policy editor for SANTA 1Ulgusll

Al Mutairi, Abd Algder ooyl @laoll

Siewe, Francois(Supervisor) VICY IOVPY 73

2009 oS> Maodl 2o,

Leicester 1890

1-105 1olxaall

687206 :MD 3,

&zol> Jlw, rSgizall g9

English :axlll

iow>lo allw, ragolell as)all

De Montfort University a0l

Faculty of Computing Sciences and Engineering ra sl
Lslay :aJgll

Dissertations 1logleoll aclgd

2wl) (o, Y (Oleeo sl dwiid silogleoll oVl :&olgo
https://search.mandumah.com/Record/687206 ol

abbgazo gzl gro> anslaiall ls 2019 ©

plaziwl bsloll 03s aclb ol Jsozi cliSey .abgazo ,inidl Sgi> grax 0l lale ouinidl Bsi> wlol go gsall SwYl sle sly aslio 83lo)l 0is
oI o il (9> Clal oo osdas gy e 0o (o SVl 35l ol iVl g8lgn Jio) aliaws ST uc il ol Juomeill of Gramill ginug s szl

ol Lalu Zyl_ﬂbl

aoglaioll

www.maharaa.com

https://search.mandumah.com/Record/687206

Chapter 1: Introduction

1-1- Motivation

The expansion of the internet and networks in the world led to increase the number
of security threats and breaches. Therefore, security should be constructed in the early
stage for system development [11]. Hence, the developers are focusing on security
requirements and how to achieve three key aspects or requirements: confidentiality,

integrity and availability.

The major purpose of the security requirements is the prevention of the data resources
from threats. This is achieved by setting up constraints that define individuals permitted
access to the data assets of a system. However, confidentiality requires that only
authorized individuals are allowed to access computer system resources, whereas
integrity describes the prevention of an unofficial modification of data. Availability of

required resource or information is its ability to be used [1].

Security policy is applied as a basis of configuration and auditing of computer systems
and networks, while upholding obedience with the policy requirements. These allow
later implementation of developmental, operational guidelines and introduction of user

access monitoring regulations [6].

Security is a major issue for organisation which deals directly with internet by doing
online business or providing services. The leak of security can facilitate the increase
exposure of the threat to the internet which can cause loss or damage of the information

or equipment or threat human life in some critical system.

This project encourages me to solve the problem that result from the difficulty of using
SANTA language for non specialist user. It will deliver a friendly editor that can allow
the user to create his policy easily. This policy will be created by using SANTA

structure.

1-2- Original Contribution:

In this dissertation, I have designed and implemented a user-friendly web-based policy
editor that allows non specialist users (normal users) to create and manage security
policies in SANTA. It is a language for specifying security policies such as authorization
and obligation policies. It is developed in the Software Technology Research Laboratory
(STRL) at DMU. Policies specified in SANTA can be analyzed using a run-time
verification tool called Tempura.

This editor has different interfaces that allow the user to create simple and compound
conditions, policy rules, simple policies and compound policies and. In addition, it has
interfaces for managing subjects, objects and actions. Furthermore, it also allows the
user to conduct functionality upgrades such as modifying, deleting the existing policies
and adding new policies. All interfaces connected with database that can manage all
policies.

1-3- Objectives

There are many objectives for my project:

- It helps to become skilled at programming languages.

- It helps to understand the concept of the security requirements and security
policy.
It helps to identify the security policy language called SANTA.

It helps to apply some of my knowledge that learned from the modules.

Methodology to reach the project

In the analysis stage, the UML (Unified Modeling Language) were used to
build the structure of the software. So it helps to identify the functional and non
functional requirement. In addition, the modeling of my project was
constructed by using JFLAB tools. The ASP.net software with SQL server
2005 was used to implement the project because I found it to be suitable
software that has several features. In the later stage Black and white test

method were used.

Project Planning Table

It is important for me to organize my work from the early stage until the final

stage. So it helps me to finish the project on time.

D Task Name Start

Finish

Duration

Choose Topic and approval | 25/05/09

by supervisors

1/06/09

1w

Literature review 2/06/09

2/07/09

Analysis And Design 3/07/09

24/07/09

implementation and testing | 75 /07 /09

3/09/09

Writing up and Submission 25/05/09

3/09/09

Table 1: Project Plan

Resource of the Project

In this project, we used academic paper, books and internet to complete my literature

review on this subject area like “Computer Security” for Matt Bishop and supervisor

PHD thesis. ASP.net and SQL 2005 software were used to implement the project.

1-7-Tools and Technologies Used

Policy Editor for SANTA is a basic user-friendly system to facilitate the non —specialist

users to perform the intended activities. System has been developed on the Microsoft

Platform using the following tools and technologies.

o Visual Studio 2008 as development tool.
e Microsoft .Net Framework 3.5 as development framework.
C# as a language.
SQL Server Management Studio as Database Tool.
SQL Server 2005 as Database Server.
Rational Rose as Designing Tool.

1-8 Dissertation Outline

In Chapter 2, I provide a comprehensive literature review about security requirements
and security policy. It provided the definition of a security policy and security
requirements. In addition I give an overview of policy models and policy languages. In

the final part of the chapter, I present security threats.

In Chapter 3, I identify relevant components of the SANTA policy language. SANTA is

a language for specifying security policies such as authorization and obligation policies.

In Chapter 4, I present the Finite State Machine model of the system, designed using
JFLAB tools.

In Chapter 5, I analyze and design a user-friendly web-based policy editor. This allows

non specialist users (normal users) to create and manage security policies in SANTA.

In Chapter 6, I implement a user-friendly web-based policy editor that allows non

specialist users (normal users) to create and manage security policies in SANTA.
In Chapter 7, I test and evaluate the system as whole.

In Chapter 8; the final chapter, I propose conclusions of this dissertation and also

provide recommendations for future work on the topic.

http://www.tcpdf.org

0‘>‘.f

4

inghigll yla

DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

A web-based policy editor for SANTA 1Ulgusll

Al Mutairi, Abd Algder ooyl @laoll

Siewe, Francois(Supervisor) VICY IOVPY 73

2009 oS> Maodl 2o,

Leicester 1890

1-105 1olxaall

687206 :MD 3,

&zol> Jlw, rSgizall g9

English :axlll

iow>lo allw, ragolell as)all

De Montfort University a0l

Faculty of Computing Sciences and Engineering ra sl
Lslay :aJgll

Dissertations 1logleoll aclgd

2wl) (o, Y (Oleeo sl dwiid silogleoll oVl :&olgo
https://search.mandumah.com/Record/687206 ol

abbgazo gzl gro> anslaiall ls 2019 ©

plaziwl bsloll 03s aclb ol Jsozi cliSey .abgazo ,inidl Sgi> grax 0l lale ouinidl Bsi> wlol go gsall SwYl sle sly aslio 83lo)l 0is
oI o il (9> Clal oo osdas gy e 0o (o SVl 35l ol iVl g8lgn Jio) aliaws ST uc il ol Juomeill of Gramill ginug s szl

ol Lalu Zyl_ﬂbl

aoglaioll

www.maharaa.com

https://search.mandumah.com/Record/687206

Chapter 2: Literature Review

2-1- Overview

This chapter presents an overview of some significant writings on security requirements

and security policy.
2-2- Security Requirements

The main objective of the security requirements are to safe-guard the information
data against potential risks. They usually provided as a mean of permitting
access to an organization’s system resources, whilst setting out a user guidelines
for various individuals who have permission to access the system and their

limitations of use [1].

2-3- The fundamental Components

The integral components of computer security comprises of confidentiality,
integrity and availability. These features are different in their characterization
from one another. They also vary in the framework each aspect is applied.
However, individual requirements, customs and laws of a specific organization
determine the interpretation of the aspect in that particular context or

environment [1].

2-3-1- Confidentiality

Confidentiality is defined as “the concealment of information or resources” [1].
The application of computer in sensitive environments (for e.g. government and
industry) has necessitated the undisclosed use of information. For instance,
revealing the exact statistic of people who have doubts about politicians is not as
significance as revealing that the poll itself was carried out by a subordinate of
the politicians, hence concealing resources is a feature of confidentiality. Several
website hide their application system and configuration as well as organization

may conceal certain equipment they use [1].

13

2-3-2- Integrity

Integrity defines the reliability of the data assets. It is usually designed in

such a way to avoid misuse of an organization’s data resources or unofficial

alterations to the system. Usually, integrity incorporates both data (the
content of the information) and origin (the data source) integrity. The latter is
commonly known as authentication. The individual user rating and
confidence on the information is the underlying measure for the accuracy and
credibility of the source of the information. “This dichotomy illustrates the
principle that the aspect of integrity known as credibility is central to the

proper functioning of a system” [1].

Integrity mechanisms fall into two classes:
2-3-2-1- Prevention Mechanisms

This method makes sure unauthorized efforts to alter data resources are
prevented so as to retain the integrity of the information. The process also
blocks any activity that can lead to alterations of the data resources in an
unauthorized manner. However, it’s important to understand the difference
between the two forms of attempts. The first attempt is applicable when an
individual who has no official permission attempts to change information,
whereas the second one happens to deny permitted user from executing

certain alteration beyond his jurisdiction [1].

2-3-2-2- Detection Mechanisms

The detection mechanisms basically report when the information integrity
cannot be trusted any more. Unlike the prevention mechanisms, the detection
mechanisms do not attempt to block violation of integrity. However, it
examines sequence of the system events in order to identify the problem. At
the same time, it may check the data information to detect whether required

or expected restrictions are still in place. These mechanisms could give detail

of the possible cause of the integrity violation. In some cases declares the file

for being corrupted [1].
2-3-3- Availability

Availability of required resource or information is its ability to be used. This
is a significant requirement of reliability and system design, as inaccessible
system is no different to lack of the system in any ways. The organization
may decide to make the data unavailable or consciously prevent the
information access which is an aspect of availability. This phenomenon is
vital to maintaining the computer security. The designed system normally
assumes a statistic model in order probe expected pattern of use. This is vital
to availability, as it guarantees availability of the data when specifications of
the statistical model are met. However, an individual could be capable to
influence the access, hence rendering invalid assumptions by the model.
This therefore, causes failure of the system, as the method allowing

availability of the data resources are operating outside its prescribed context

[1].

Confidentiality

Information
Security
Aspects

Availability Integrity

Figure 1: Information Security Aspects (adopted from: Russell and Gangemi, 1991)[12].

2-4- Security Policy

2-4-1- Definition
A security policy defines specified rules and regulation set to ensure communication is
maintained between the staff managing the system and individual user. Security policy
is expected to interpret and verify primary security. Hence security policy acts as link
between the management’s objective and the security requirement of the users [6].

2-4-2- Security Policy Models

2-4-2-1- Overview
A company's security policy models summarize statements of how organizational

assets and properties are to be protracted, typically written in one page or less.
Organizations typically state their protection goals of various systems as agreed by the
senior executive management and hence functions as the basis of guidance of do and
don’ts with regards to protection and maintenance of systems, assets and other sensitive
organizational properties that are susceptible to compromise.

There are different security models adopted by different organizations, each has merits
and demerits and sometimes related to protection of assets on a specific industry. Below
is a summary of some for the leading and popular models in the security policy [4].

2-4-2-2- Bell-LaPadula Policy Model

This model was adopted as a result of a research work conducted by David Elliott Bell
and Leonard J. La Padula in the 1970s. This security model is an access control that uses
formal and mathematical description approach to explicitly denote how a security should
be maintained, by using some sort of comparison to determine an access right based on
the authorization level of the requested and the level of access authorized on the object.

There was a widespread realization that protection of commercial operating systems was

poor, bugs and system vulnerabilities kept being discovered on commercial systems as

soon as one is fixed. As a result, US government introduces a reference monitor concept
and this was adopted as a result of a study conducted by James Anderson who concluded
that protection of secure systems and properties should be enforced by using a simplified
verifiable mechanism that rarely change. Reference monitor is part of Trusted
Computing Base (TCB). TCB is a set interrelated hardware, software human
components that together ensures enforcement of a security policy failure of which

causes a breach of security policy [6].

2-4-2-3- Clark-Wilson Model

This security policy model is widely used in commercial environments to primarily
ensure integrity of organizational data and prevent corruption of data due to error or
malicious intent. It was proposed by David D. Clark and David R. Wilson in 1987. The
policy clearly defines how organizational data should be kept securely with data
integrity intact. It distils centuries old double-entry bookkeeping method which tends to
mitigate insider fraud and ensure integrity of bank’s accounting system. By posting each
transaction to two different books namely Credit and Debit (assets and liabilities
respectively), the accounting book should balance anytime a reconciliation is done. This
ensures information integrity. Enforcing this policy entails principle of splitting job
responsibilities to more than one staff and hence any potential fraud may requires
collusion of two or more staff [6].

2-4-2-4- Chinese Wall Model

Is a popular security model proposed by Brewer and Nash in 1989.This policy tends to
prevent flow of information in situation where conflict of interest is prevalent. This
policy is widely used by professional consultants and investment bankers to build a
virtual wall that separates the control the flow of information in order to avoid a conflict
of interest or insider trading in a financial setup. For example, a conflict of interest arises
here of an individual consults for two companies of same industry, particularly in a
financial sector, as soon as a consultant interacted with two companies of same time
business line. A closed ‘Chinese Wall’ is erected once an individual consulted for

companies of same industry type and hence avoids conflict of interest on the job [6].

17

2-5- Security Policy language
2-5-1- Overview

This is the language that represents the security policy. The security policy languages
are categorized into two groups; High-level policy language and Low-policy language.

2-5-2- High-Level Policy Languages

These refer to the restrictions imposed on the system’s entities and commands which

provide defined terms of the security policy. The accuracy of such expression demands

formulation mathematical model of the security where ordinary English could not be

applied [1].

2-5-3- Low-Level Policy Languages

A low-level policy language refers to a collection of inputs, argument to command those

inputs and to verify the limitations on the system [1].

2-6-Policy Management

Customary reviews have to be employed in order to make sure the security policy is up
to date. This may be executed in such a way that the organization’s operation systems
are directly translated into the security policy.

It was suggested that a special unit such as data security unit be assigned to administer
the security policy. The unit would be in charge of performing expected reviews and

keeping the security policy up to dated [6].

Killmeyer (2006) outlined the duty of security management. He stated the security
management should provide direction and put procedures in place to control and
minimize the risk of losing data and information. He also stressed that the security
management requires further security measures in order to identify the origin of all
massage coming through and their authenticity. When the messages are strictly
authenticated, that will help to reinforce security, and stop any attempt to forget

identities [10].

2-7-Repudiation

Killmeyer also discusses the concept of repudiation. Non repudiation means receiving a

proof of delivery and certification of the source. This is a method which guarantees that

the sender cannot later deny that he/she has sent the message and also the recipient
cannot refuse that he/she has received the message. This is an alternative way to manage
and apply security by monitoring the messages going through the networking
system[10].

2-8-Development of security policy

Security policy is significant in ensuring efficient and understandable security systems
are created. Although the essential nature of developing security policy is frequently
ignored, it serves as a vital element of the computer security design. The main purpose
of the security policy is to decode the management's requirements for the security into a
simple well defined and directed to a precise targets or objectives. Using a top down
method is essential to derive an efficient and well developed overall security
architecture. In the other hand, lack of security policy to relay the management's
expectations will result in such decisions being made directly by individual users.
Therefore significant operations such as installation and maintaining the computer
system will be left in the hands of the individual users to be made. These consequently
would lead to the implementation of an ineffective computer security systems or

architecture [6].

2-9-Security policy violation

Violation of the security policy is a very serious threat to an organization’s data assets.
The violation may not necessarily take place in order to pose a risk at an organization’s
security resources. However it’s essential to protect against those activities that may lead
to the security violation. The actions that cause violation are commonly known as

attacks which are usually carried out by attackers [2].

2-9-1-Interception

Interception is an unlawful disclosure of information which is a serious breach and a

risk to confidentiality. This is mostly carried out through passive wiretapping which

happens when listening to certain entity, reading or browsing files or systems

information. The threat is also referred to as snooping or eavesdropping [2].

2-9-2-Modification/Alteration:

This is an unlawful alteration of the data security assets which is a threat to the data
reliability. As opposed to interception, modification is an active form of violation. This
might be achieved by active wiretapping, which is an alteration that influences the
nature of data communication between networks. A typical example is the man in
middle attack where an intruder monitors and reads information from sender and then
sends a modified edition to the recipient. I most cases, the presence of a third-party is

not felt by the either the sender or the reader [2].

2-9-3- Masquerading/Spoofing

Another threat to the data security reliability includes the violation such as
masquerading or spoofing, which involves masquerade of an individual by another
person. In this case, the violators disguise the true identity of the service from the

individuals at the receiving end so as to entice him accepts a particular entity [2].

2-9-4- Interruption

Threats to the data availability include a form of infringements such as “interruption”.
This mainly takes place in a form of an unlawful denial of users’ access into specific

data resource. A common example is revealed when an intruder influences the server

performing its service; a breach known as the denial-of-service attack. The attackers

accomplish this through various mechanisms such as denial at the source which stops
the server from receiving the information supply. These data resources are required for
effective function of the server at its local environment thus hindering information
transmission via the server across networks. The denial may also occur on the route of
the intermediate pathway thereby getting rid of the information from the server or the

client or influencing both of them [2].

2-9.5-Fabrications

Fabrications are another form of violation which compromises the security integrity.
These involve assembly of forged resources or unlawful addition of information. A
common example is the insertion of false information in a network [2].

However, the staffs are required to develop complete understanding and knowledge of
the costs of the policy violation, so as to be able to appreciate the significance of the

security policy.

Security policy violation is a serious threat to an organization’s corporate systems and
should be dealt appropriately. Staff or individuals who violated the policy must be
notified about their action and cautioned to face penalty. These may be done by placing
them on a “trial period” by allowing them access only limited resources until they
demonstrate competency to utilize the organization information in a safe way and
comply with the security policy when using the corporate systems. In a more serious
case of violation, the violator should be warned of being sacked or getting prosecuted.
Although the latter punishment may seem to be too much, reasonable step has to be
taken in any case of violation following the terms or guidelines as outlined in the AUP
and the policy. However, the main concentration should be on maintaining the security
rather than just the punishment for the violation. Without this, it would be difficult to
penetrate which might be as a result of human mistake or misinterpretation of the

security policy [5].

http://www.tcpdf.org

0‘>‘.f

4

inghigll yla

DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

A web-based policy editor for SANTA 1Ulgusll

Al Mutairi, Abd Algder ooyl @laoll

Siewe, Francois(Supervisor) VICY IOVPY 73

2009 oS> Maodl 2o,

Leicester 1890

1-105 1olxaall

687206 :MD 3,

&zol> Jlw, rSgizall g9

English :axlll

iow>lo allw, ragolell as)all

De Montfort University a0l

Faculty of Computing Sciences and Engineering ra sl
Lslay :aJgll

Dissertations 1logleoll aclgd

2wl) (o, Y (Oleeo sl dwiid silogleoll oVl :&olgo
https://search.mandumah.com/Record/687206 ol

abbgazo gzl gro> anslaiall ls 2019 ©

plaziwl bsloll 03s aclb ol Jsozi cliSey .abgazo ,inidl Sgi> grax 0l lale ouinidl Bsi> wlol go gsall SwYl sle sly aslio 83lo)l 0is
oI o il (9> Clal oo osdas gy e 0o (o SVl 35l ol iVl g8lgn Jio) aliaws ST uc il ol Juomeill of Gramill ginug s szl

ol Lalu Zyl_ﬂbl

aoglaioll

www.maharaa.com

https://search.mandumah.com/Record/687206

Chapter 3: SANTA Language

3-1- Overview

The chapter introduces a security policy language commonly known as the

SANTA. We would also look into the policy in SANTA by unfolding the

authorization, obligation and delegation.

3-2- Definition

SANTA (Security Analysis Toolkit for Agent) is language for specifying security

policies such as authorisation and obligation policies. SANTA is developed in the
Software Technology Research Laboratory (STRL) at DMU and is used to specify and

analyse security policies using a run-time verification tool called Tempura.

)
3-3-Policies in SANTA

A security policy in SANTA is based on the notion of subject, object and action.
A subject is assumed to be an active entity that can perform an action on an object or
another subject. Examples of subject are users, processes or agents running on behalf of
users. An object is a passive entity that stores some data, ¢.g. a file, a storage device ora
profile. An action is an operation that can be performed on objects or subjects, e.g. read

a file, append to a file, withdraw money from a bank account and so on.

3-4- Syntax of SANTA Policy

3-4-1- Simple Condition
The syntax of the simple condition is that
< cond > ::=<expl ><rop><exp2 > relational conditions

<rop>:==|>|<|<|2

relational operators

<exp>:u= <var> variable symbols
|< const > constant symbols such as true, false, 0, 1, 2
|- <exp> unary minus
| (<exp>) parentheses
l< expl ><aop ><exp2> binary arithmetic operations
<aop> =+ |-|*|/ arithmetic operators

22

Example of simple conditions:
e x=5
o x+y>-1
e 2*(x+3)<0

3-4-2- Compound Condition
The syntax of the Compound condition is that

< Ccond > ::=<cond > simple condition
| < Ccondl > " < Ccond2 > conjunction
| < Ccondl >v < Ccond2 > disjunction
|~ <Ccond > negation
| (< Ccond >) parentheses

Example of compound conditions:
e x=5
e (x+y>-)"—(x<0)

3-4-3- Policy Rule

3-4-3-1- Authorization Rule

This rule specifies access control measures. Authorization involves three types
of rules namely positive authorization, negative authorization and decision

rules[3].

Positive Authorization

These are declarations that express specific conditions under which specific
summon for access could be tolerated. However, as far as ultimate decision of
the policy for the right of system entry is concemed, only the signal is the taken
into consideration [3].

A positive authorization rule has the form

f —— autho+(X,Y,Z)

The letter f represents ITL formula in this syntax. X,Y,Z represent subject, object and

action respectively. The rule expresses that the subject X is clearly granted to carry out

23

the action Z on the object Y each time the specifications of f'is fulfilled. The formula fis

regarded as the premises or the body of the rule whereas the conclusion of the rule refers

to the expression autho’ (X, Y, Z) [2].

Negative Authorization

On the other hand, negative authorization rules describe condition under which
the right of entry into a system should be denied. Although negative
authorization operates in opposite direction to the positive authorization but the
mechanism of implementing their roles are similar. This is due to the fact that
under negative authorization as well, only the indication is place into
consideration as far as the final access decision of the policy is concerned [3].

A negative authorization rule has the form

f b—> autho (X,Y,Z2)

The letter f represents ITL formula in this syntax. X,Y,Z represent subject, object
and action respectively. The rule expresses that the subject X is clearly rejected
from carrying out the action Z on the object Y each time the specifications of fis

satisfied

Conflict resolution rules

These are rules that indicate the ultimate decision of access regulation of the
policy. It is necessity to incorporate decision rule into any policy, without which
access would permanently be denied.
A conflict resolution rule has the form

f —» autho(X,Y,Z)

This rule was derived in order to express specifications that define the right of
access for both positive and negative authorizations. The variance within the
authorization rules are fixed by the application of the conflict resolution rules [2]

24

3-4-4- Simple Policy

This refers to a set of policy rules. The syntax below is usually applied to define the
behaviour of the simple policy. The letters p and q ranges over simple policy whereas r
refers to a policy rule.

p:u=@liripUqglp/\alp\al—pln+(p)In—(p)

“The empty policy @ contains no rules. The set operators “U”, 4"\ “and “\” have their
usual meaning. In particular, the operator “U” can be used to add rulesto a policy
while the operator “\” can be used remove rules from a policy. The unary operator “—

“ changes positive authorisation rules into negative ones and negative authorisation
rules into positive ones and leaves conflict resolution rules unchanged if there is any in
the policy argument. The operators i+ and - return respectively the set of positive
authorisation rules and the set of negative authorisation rules contained in the policy
argument” [2].

3-4-5- Compound Policy
Compound policy is a composition of simple policies.

The syntax is the following:

< policy > ::= < simple policy > simple policy
| {< Ccond>} < policy> unless
| [< Ccond >] < policy > as long as
|< const>: < policy > duration
|< policyl >; < policy2 > chop

3-4-6- Delegation

The process by which one subject passes on a specific access privileges to another
different subject is known as delegation. This is a very effective model that permits one
off shift of right of a system access to another subject. The policies on delegation are
there to allow responsible use of such concept, and at the same time, lessening the

authority of the subject to undertake the practice [3].

A delegation has the form

deleg = {deleg (s, Sz 0,a)| 51,52€5,0€0,aeA}

In analogy to the authorisation model, delegation is modelled using Boolean variable.
The Boolean states variable used in such a way that the access right to execute action a
on object o id delegated from subject s1 to s2 [2].

3-4- Obligation

This refers to the specific set of terms and conditions under which a subject has an
obligation to carry out the action on an object. The specification or conditions of the
obligation should be satisfied by the obliged subject. This process minimizes the

implementation of an obligation on the protection discharge mechanisms [3].

3-5- Types of policies in SANTA
SANTA policies are categorized into two: Environmental policy and behavioral policy.
- Environmental policies:

The main purpose of the environmental policies is to maintain integrity
of an object as well as control access to the data resources of a system 3]

- Behavioral policies

These are policies that control the actions or behavior of a subject. The behavioral

policies are designed in such a way that to outline limitation the user rather favors to be

implemented [3].

3- 6- Policy specification

This is a mechanism by which non-official security enforcement specifications in the
policy language are demonstrated. The rules in the policy act as the foundation for
SANTA policy requirements development. However, devising set of rules that
essentially govern the non formal requirements is among most essential needs during the

specification development [3].

3-7- policy Composition

In SANTA policies, a sophisticated set of various operators can be implemented to
derive specified policies in small entities which is more advantageous compared to the

othet policy languages [3].

3-8-Summary

In this chapter we explained the SANTA language as policy language. SANTA is a

language for specifying security policies such as authorization and obligation policies.
These policies are based on the notion of Subject, Object and Action. A subject is
assuming to be an active entity that can perform and action on an object or another
subject. An object is a passive entity that stores some data, e.g. a file, a storage device or
a profile. An action is an operation that can be performed on objects of subjects, e.g.

read a file, append to a file, withdraw money from a bank account and so on.

http://www.tcpdf.org

o
0.0

*

inghigll yla

DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

A web-based policy editor for SANTA 1Ulgusll

Al Mutairi, Abd Algder ooyl @laoll

Siewe, Francois(Supervisor) VICY IOUPY 73

2009 oS> Maodl 2o,

Leicester 1890

1-105 1olxaall

687206 :MD 38,

&zol> Jlw, ' Sgizall g9

English :axlll

riow>lo allw, ragolell a)all

De Montfort University a0l

Faculty of Computing Sciences and Engineering ra sl
Lol 1ol

Dissertations 1logleoll aclgd

2wl) (o, Y (Oleeo sl dwiid silogleoll oVl :&olgo
https://search.mandumah.com/Record/687206 ol

abbgazo gzl gro> anshaiall ls 2019 ©

plaziwlW 8sloll 0is aclb ol Jeozi Sy abgaxo yiull Bea> gro> Ol lole oyl JsbyLui 2o gdgoll Byl (sle sly aslio 83lo)l 0in
s ol idl Bgi> wlol oo wsbas zural Vs (g SIVI 3l ol iVl gdlgo Jio) @lws Sl e il ol Jigmdl ol duwsdl gioug nid swazeadl

ol Lalu Zyl_ﬂbl

.aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/687206

Chapter 4: Modelling of the System By (FSM)

4-1- Introduction

A Finite State Machine (FSM) method would be applied here to symbolize the model of
system. This will enable to demonstrate the mechanism of the system operation in the

early stages.

4-2-Definition of Finite State Machine

Hierons described finite state machine (FSM) “ is model that defines the required
behaviour of an implementation, it is important to verify the implementation against the
FSM” [7].

A finite state machine (FSM) is formal method for modeling system to help the
programmers to understand the system. In this stage we will use the JFLAB tool to

create all states and transition between each state [8].

This is an example for basic model of finite state machine which shows two states and

between them a transition denoted with letter “a” in the diagram below.

Figuer2: Basic model of (FSM)

4-3-JFLAP

JFLAP is a package of graphical tools which can be used as an aid in learning the basic

concepts of Formal Languages and Automata Theory [7].

4-4- Design Model of State

Under this section, a formal state model would be designed in order to facilitate
comprehension of the high level system analysis and development. It will also provide

easy use of the technical skills and application of transferable skills in communication.

4-4-1- Simple condition model

Simple condition syntax

< cond > ::= < expl ><rop >< exp2 > relational conditions
<rop>:= =|<|>|<|2 realtional operators
sexp>=<var> variable symbols

| < const > constant symbols such as true, false, 0,1, 2

| - < exp > unary minus

| (< exp >) parentheses

| < expl >< aop >< exp2 > binary arithmetic operations
<aop >:=+|—|*|\ arithmetic operators

Example of simple conditions:
x=5
x+y>-1
2%x+3)<0

The first model we designed is simple condition. It has eight states and each state has

different transition.

Condition

Figure3 Simple Condition Model (FSM)

It can be seen from this model that the user can create simple condition and save it in

database. So the user can not save the simple condition without name it as a result the

system will reject. In addition, he can do other functionality such as delete, update and

search.
4-4-2- Compound Condition Model.

Compound condition is consists of one simple condition or more. It has a different

model from simple condition.

Compound Condition syntax:

< Ccond > ::=<cond > simple condition
|< Ccondl >~ < Ccond2 > conjunction
| < Ccondl >v <Ccond2 > disjunction
| ~<Ccond > negation
| (< Ccond >) parentheses

Example of compound conditions:

X=5
Bt y=1)" ¥zl

Figure 4: Compound Condition Model (FSM)

This model shows that the user can create compound condition and save it in database.

The system restricts the user which prevents him to save invalid format for example if

the user put at the end of the condition operator.

4-4-3- Policy Rule Model

Policy rule consists of two parts premise and consequences (type of authorisation,

subject, object and action). This model will represent how policy rule works.

31

Description

Figure 5: Policy Rule Model (FSM)

From this model it can be seen that policy rule has 11 states and final state is g8 which is
database, that user can save his policy rule. The user can also choose any type of access

(authoP,authoN,autho).

4-4-4- Simple Policy Model

Simple policy is set of rules and in this model we will show how the user can create the

policy.

Figure 6: Simple Policy Model (FSM)

This model shows that the user can create his simple policy by choosing one rule or
more than one. This is obvious from the iterative transition from g3 to g2 to let the
user to choose another one . It also strict the user to write the name otherwise he can

not save his policy.

4-4-5- Compound Policy 1

Compound Policy is composition of simple policies. So in this report we will divide that

in two steps, the first one is compound policyl and the second is compound policy2. In
compound Policy1 interface user can create one of these elements (simple policy, as
long as, unless, duration). Then he can save it as compound policyl which will use it

later in compound policy2.

Duration
As long as
Unless
SimplePolicy

Figure 7: Compound Policyl Model (FSM)

The model shows that there are seven states and the first state is start, final state is 4.

The system strict user by letting him to create only one element to move from g2 to q3.

4-4-6- Compound Policy 2 Model

Compound policy? is composition of compound policy 1 which is created early.

Figure 8: Compound Policy2 Model (FSM)

From this model it can be seen that the user can make composition for his policies.

In This model also he can create one policy or more but it must be made composition

If it is more than one.

4-4-7- Subject and Object Model

There is no different between Subject and Object model all the structure. So we design

one model to show the structure for both of them.

Figure 9: Subject and Object Model (FSM)
This model shows that the user can build the subject and object with their attributes.

The system can create more than one attribute for each entity.

4-4-8- Action Model

This Model is different model from the previous model because it has different

structure.

Figure 10: Action Model (FSM)

4-5- Testing the state machine
4-5.1. Overview

In this division we will test all model to make sure if models were created properly. So

we will use all possible tests.

4-5.2. Type of festing using JFLAP

The JFLAP has different type of testing which is helpful such as test by step state, fast
run and multiple run. We will apply each type for different model.

4-5-3- Result of the test
Will be testing the simple condition by using multiple Run:

4-5-3-1-Multiple Run

ameDescriptionCondiionSaveSearch by nameDelete
ameDescriptionConditionSaveSearch by nameClear Accept
scriptionnameConditionSave

Figure 11: Simple condition model test

4-5-3-2- Step by state

Figure 12: Compound Condition Model test

4-5-3-3- fast test

. ‘@[namenescnpﬁonmmiséwmnm

, {namaf};au;,.m.; miseauhat

Figure 13: Action Model (FSM)
4-6-Summary:

In this chapter we tried to model the system by using the FMS and JFLAB because they
are very significant method to model the system. So the programmers focus on the
system modeling to understand how it works. In addition, they ensure if the functionality
of the system work as specified or not. The benefit of that is to help the programmers to

discover problems and fit them in early stage.

http://www.tcpdf.org

o
0.0

*

inghigll yla

DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

A web-based policy editor for SANTA 1Ulgusll

Al Mutairi, Abd Algder ooyl @laoll

Siewe, Francois(Supervisor) VICY IOUPY 73

2009 oS> Maodl 2o,

Leicester 1890

1-105 1olxaall

687206 :MD 38,

&zol> Jlw, ' Sgizall g9

English :axlll

riow>lo allw, ragolell a)all

De Montfort University a0l

Faculty of Computing Sciences and Engineering ra sl
Lol 1ol

Dissertations 1logleoll aclgd

2wl) (o, Y (Oleeo sl dwiid silogleoll oVl :&olgo
https://search.mandumah.com/Record/687206 ol

abbgazo gzl gro> anshaiall ls 2019 ©

plaziwlW 8sloll 0is aclb ol Jeozi Sy abgaxo yiull Bea> gro> Ol lole oyl JsbyLui 2o gdgoll Byl (sle sly aslio 83lo)l 0in
s ol idl Bgi> wlol oo wsbas zural Vs (g SIVI 3l ol iVl gdlgo Jio) @lws Sl e il ol Jigmdl ol duwsdl gioug nid swazeadl

ol Lalu Zyl_ﬂbl

.aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/687206

Ll o e St Sl i

SR S

il posdiliede

TP I

ey ool e

.

Chapter 5: Requirement, Analysis and Design

5-1- Overview:

In this chapter, requirements are analyzed and system design in represented. We will use
the UML (Unified Modeling Language) notation to analyze the system requirements and
to design the system. This design will lead to the implementation of the working system.

All the system stakeholders are identified and proper collaborations/interactions are

presented [13].

5-2- Problem Domain Requirements:

“The first stage addresses the highest level (or widest scope) of the requirements
analysis. It is in terms of this level that other levels of analysis, down to the reportable

attributes which actually express measurements of systems, must be validated “[13].

“The basic tasks the system is required to address are functional requirements, which at
the top level of description should relate as closely as possible to valid and measurable
user requirements”’[15]. For Policy Editor for SANTA, “this is relatively
straightforward, since the main functional requirements can be expressed in terms of
facilitating the end user to perform the main intended activities under certain

condition”.[15]

5-3-System Requirements:

Policy Editor for SANTA must allow the user to perform the following tasks.

Add Update, Delete and Search the Subjects, Objects and Actions.
Add Update, Delete and Search the Simple Conditions and Compound
Conditions.

Add Update, Delete and Search the Simple Policies and Compound Policies.

5-4- UML Diagrams:
5-4-1-Use Case Model:

A use-case model represents the actors, the use cases and the relationship between them.
The actors are who represent the interaction with the system and exchange information
with the system. When these actors interact with the system the system perform some
actions/activities based on the information exchanged by the actor and provides the
desired results/functionality to the actor/user. Actor is always external to the system

which on interact with the system using the provided interfaces [13].

5-4-1-1 System Level Use Case Diagram:

K

Condition

Figure 14: System level
System Level Use Case Description:

The main actor of the system is any non-specialist user who will interact with the system to
manage or create the Subject, Objects, Actions, Policies and Conditions. System will perform

some actions against the actor’s request to fulfil the requirement.

5-4-1-2-Elaborated Use Cases:

Action:

S

Add_Action
o, <<Includes>>
\

e AT

<<|ncludes>>]
CO=me=2 Sy -2

Delete_Action
update_catalog
A

T 2
S e

Search_Action

S
>
¢ >

Update_Action

Figure 15: Action Use Case Diagram

Action Use Case Description:

Goal: User will be able to Add/Delete/Update/Search the action.

Actors: Non-Specialist User, System Catalogue.

Pre-Conditions: User gets the refreshed page to add new actions. To delete, update and
search an action is already saved to the system catalogue.

Post-Condition: Action is Added/Updated/Deleted/Searched successfully.

Subject:

ﬂ \\——/) -
Add_Subject
“~._<<Includes>>
o
b, 0

D >
S T ?L.—)________ s e ___} e

Delete_Subject
updale catalog

K\D <<|nc|u,d€s>>

\Search Sul ect //
s bj :

Update_Subject

Figure 16: Subject Use Case Diagram

Subject Use Case Description:

Goal: User will be able to Add/Delete/Update/Search the subject.

Actors: Non-Specialist User, System Catalogue.

Pre-Conditions: User gets the refreshed page to add new actions. To delete, update and
search a subject is already saved to the system catalogue.

Post-Condition: Subject is Added/Updated/Deleted/Searched successfully.

-

e Add_Subject -
- ~__<<Includes>>
B

el

= @\«-71@}(’ \) _ <<includes>> =
i g

update_catalog

Delete_Subject

N

RCOR
¢ T 5
5 \@l 4 <<|nc|udes>>,,/ﬂ
M o
g

///
“\Search_Sub]ect o ,//

LR
&>

Update_Subject

Figure 17: Object Use Case Diagram

Object Use Case Description:

Goal: User will be able to Add/Delete/Update/Search the object.

Actors: Non-Specialist User, System Catalogue.

Pre-Conditions: User gets the refreshed page to add new actions. To delete, update and
search an object is already saved to the system catalogue.

Post-Condition: Object is Added/Updated/Deleted/Searched successfully.

Policy Rule:

P st ‘\\
<<Includes>> L)

" 71Get Actien

o S e W@s>>
Add_PolicyRule™. _ W jtion
T

3 <lnc|udes>>\/"\/\ /)'Q -

qe SRS
/
<<Includes>>" &7
o

N <<includes>>— \~\<ilncludes>>G"'--sUbiect
e >,(o N
o 4 ST

A e

B /<<hc|umM

o <<lncludas>>
R \ Get_Obj
— ect
Update_PolicyRule e, o '

<<hclt:&;<%m o 5/”

o update_catalog

lete_PolicyRule

&>

Search_PolicyRule

Figure 18: Policy Rule Use Case Diagram
Policy Rule Use Case Description:

Goal: User will be able to Add/Delete/Update/Search the Policy Rule.

Actors: Non-Specialist User, System Catalogue.

Pre-Conditions: User gets the refreshed page to add new actions. To delete, update and
search a Policy Rule is already saved to the system catalogue.

Post-Condition: Policy Rule is Added/Updated/Deleted/Searched successfully.

Simple Policy:

T D

il Get_PolicyRul
es
A SimplePoﬂcy\\\\ 5 .

ek

\«hcludes»

L ol J*‘wﬁmﬂ\ L (—\ Tan S ’i

Delete_SimplePolicy
<<lncludes>>/ .~ update_catalog

S

Ca’calog

e o
ey
\Saarch SImpIeP icy

5/
(

\/

Update_SimplePolicy

Figure 19: Simple Policy Use Case Diagram

Simple Policy Use Case Description:

Goal: User will be able to Add/Delete/Update/Search the Simple Policy.

Actors: Non-Specialist User, System Catalogue.

Pre-Conditions: User gets the refreshed page to add new actions. To delete, update and
search a Simple Policy is already saved to the system catalogue.

Post-Condition: Simple Policy is Added/Updated/Deleted/Searched successfully.

Compound Policyl:

<<Includes>>

/// Get_SimplePolicy

™

= /ﬂ
%—~¢M
% G
Add_CompoundPolicy1 5 7\<$mc|udas>>

/" \\(< S el 7 Get_CompoundPolicy
/ // \ Y \\\\
7 <<Includes>)<—/ et
TN s o
S

it

Vi £
4 / T g
g/ 1 e \..‘4“0‘ Wi Get_CompoundCondition
o e L <<includes>>
e o

N

oy

¥

s \\5{\\,\ Update_CompoundPolicy1
ST
User \\\

B)
e <<Includes>> ey i i
' /// .
3 T s update_catalog
\ N e Catalog

..,,\ e ///
N
\ NG
Delete_CompoundPolicy1

&

Search_CompoundPolicy1

Figure 20: Compound Policyl Use Case Diagram
Compound Policyl Use Case Description:

Goal: User will be able to Add/Delete/Update/Search the Compound Policyl.

Actors: Non-Specialist User, System Catalogue.

Pre-Conditions: User gets the refreshed page to add new actions. To delete, update and
search a Compound Policy1 is already saved to the system catalogue.

Post-Condition: Compound Policy is Added/Updated/Deleted/Searched successfully.

Compound Policy2:

<<includes>> P

/7/Get_CompoundPolicy1

//

W .
\<_\<Include§3,>/

T LN
NG
.

S
a5 s ~.<<Includes>>
: %g e >\\\% <<lsncludes>>\\\
5

Update_PolicyRule S 2

e
“\ /«‘-’\ (A
<<lncludes>/>/K\V)VHvﬁ—“““‘\7\ ‘j;)'
" update_catalog -
Catalog

lete_PolicyRule
Search_PolicyRule

Figure 21: Compound Policy2 Use Case Diagram
Compound Policy2 Use Case Description:

Goal: User will be able to Add/Delete/Update/Search the Compound Policy2.

Actors: Non-Specialist User, System Catalogue.

Pre-Conditions: User gets the refreshed page to add new actions. To delete, update and
search a Compound Policy? is already saved to the system catalogue.

Post-Condition: Compound Policy is Added/Updated/Deleted/Searched successfully.

Simple Condition:

€ >

s TR

//,/f"/?Add__SimpieCondition\
5 ~._ <<Includes>>
b
B
‘*_’\s B v ;

U:q"c'“d‘”» D /
g L >\(3______._._._%

" Delete_SimpleCondition B o 19
= update_catalog

: b 7

\\‘ \ /

\ N :

(‘ \ <<Incl s;>
‘v/ "
gh_SimpleCondiga/

Update_SimpleCondition

Figure 22: Simple Condition Use Case Diagram

Simple Condition Use Case Description:

Goal: User will be able to Add/Delete/Update/Search the Simple Condition.

Actors: Non-Specialist User, System Catalogue.

Pre-Conditions: User gets the refreshed page to add new actions. To delete, update and
search a Simple Condition is already saved to the system catalogue.

Post-Condition: Simple Condition is Added/Updated/Deleted/Searched successfully.

Compound Condition:

P et
<<hi“9_°/533ﬂ/’ i &\)

N Get_CompoundCondition
(\/’)\«Includas» -

-

Add_CompoundCondition P g

4 < €
Lo i s ~._ <<includes>>

/

e 7 e Get_SimpleCondition
Ol el a

“_<<Includes>>
<

] <<Includ§s<
S
5

e, Y
A T g S

2 S
)‘\\éﬂncludes» Deeaily \\

S Update_CompoundCondition .

e

B i

= i s i @
Q\e{de_OompoundCondmon >(j____,_w~_ Sl
= b i,

‘\/—__ update_catalog Catalog

@

i Qe

Search_CompoundCondition

Figure 23: Compound Condition Use Case Diagram

Compound Condition Use Case Description:

Goal: User will be able to Add/Delete/Update/Search the Compound Condition.
Actors: Non-Specialist User, System Catalogue.

Pre-Conditions: User gets the refreshed page to add new actions. To delete, update and
search a Compound Condition is already saved to the system catalogue.
Post-Condition: Compound Condition is Added/Updated/Deleted/Searched
successfully.

5-4-2-Class Diagram:

Class diagrams represent the static view of the system. The structure which contains all
system classes their attributes and relationships among these classes. Classes are UML
notations to depict all entities which directly or indirectly are stake holders of the
system. No dynamic information is represented using this representation.

The following below diagram shows the static structure of Policy Editor for SANTA. It
shows all the system classes with corresponding attributes and operations. Class

hierarchies are shows by using associations and inheritance relationships [13].

Figure 24: System Class Diagram

5-4-3-Sequence Diagram:

A sequence diagram in Unified Modeling Language (UML) is a kind of interaction

diagram that shows how processes operate with one another and in what order. It is a

construct of a Message Sequence Chart. Every sequence diagram represents a use case
scenario which depicts the entire communication and message passing sequence. Below
are the sequence diagrams for Policy Editor for SANTA and every single diagram

represents the individual use case scenario in the system [14].

Action:

Add Action:

@)

‘I’.

3

N

: User

addAction(name,description,code, paramerts,access Type)

ValidateFields()

Update_Catalogue()

Updated ﬂg
Action Added

Figure 25: Add Action Diagram

User has to provide all the required parameters in order to add new action to the system.
That will be performed in the class of Action which contains all the required functions
and attributes to perform this action. Once all the fields are validated, Action will be
saved to the database and user will be given an acknowledgement of successful addition

Delete Action:

>

~

i er :Action

I deleteAction(name)

delete()

ActionDeleted

confirmDeletion()
E

Figure 26: Delete Action Diagram
51

Deletion of any action will be made based on the provided name of the action. On
successful deletion database would be updated and acknowledgement will be provided
to the user.

Search Action:

2

) // ‘\\\

 Eiair :Action

! searchAction(name)

getAction()

Action

validateAction()

Action

Figure 26: Search Action Diagram

In order to search any action, that action should be saved and user has to provide that
action name to be searched. Once action searched, it will be shown to the user with the
respective fields.

Update Action:

i

)

A
: User [—A—ctao;—
|

teAction(name,description,code, rts, T D
jupda ion(name,description,code, paramerts,accessTy \alidateFields()

updateCatalogue()

Updated /E

ActionUpdated

Figure 28: Update Action Diagram
52

In order to update any action which has been already added by the user, any field can be
changed and provided to be updated. If user do not change any fields and still wants to
update the action all the fields would remain same. If user changes any fields than all the
changes will be written to database and next time user will see the changes to that
action. On successful update user will be given a success acknowledgement.

Subject:

Add Subject:

o
o

7

i :Subject :Catalogue

laddSubject(name,physicaIName,desctiption,attﬁbutes l

ValidateFields()

Update_Catalogue()

Updated /H
Subject Added]

Figure 29: Add Subject Diagram

User has to provide all the required parameters in order to add new subject to the
system. That will be performed in the class of Subject which contains all the required
functions and attributes to perform this action. Once all the fields are validated, Subject
will be saved to the database and user will be given an acknowledgement of successful
addition

Delete Subject:

&1
8 i

S
: User

:Subject

l deleteSubject(name) [

delete()

SubjectDeleted

confi rmDeletion()

Figure 30: Delete Subject Diagram
Deletion of any subject will be made based on the provided name of the Subject. On

successful deletion database would be updated and acknowledgement will be provided
to the user.

Update Subject:

O

A

: User

:Subject

llnpdateSubject(name,physicalName,description,attribut)

validateFields()
updateCatalogue()

Subject Upated

Subject Updated

Figure 31: Update Subject Diagram

In order to update any subject which has been already added by the user, any field can
be changed and provided to be updated. If user do not change any fields and still wants
to update the subject all the fields would remain same. If user changes any fields than all
the changes will be written to database and next time user will see the changes to that
subject. On successful update user will be given a success acknowledgement.

Search Subject:

iy

o

A

Uk :Subject —‘I
l

I searchSubject(name)

getSubject()

Subject

-

validateSubject()
)

Subject

Figure 32: Search Subject Diagram

Subject would be searched based on the provided name. Fields would be set to the
corresponding searched data and acknowledgement will be give to user on successful
search.

Object:
Add Object:

:Object :Catalogue

I addObject(name, physicalName,description, attributes

ValidateFields()

updateCatalogue()

Object Added

Object Added

Figure 33: Add Object Diagram

User has to provide all the required parameters in order to add new Object to the system.
That will be performed in the class of Object which contains all the required functions
and attributes to perform this action. Once all the fields are validated, Object will be
saved to the database and user will be given an acknowledgement of successful addition.

Delete Object:

e

: User

:Object

‘ deleteObject(name) l

delete()

ObjectDeleted

confirmDeletion()
skt

Figure 34: Delete Object Diagram

Deletion of any object will be made based on the provided name of the Object. On
successful deletion database would be updated and acknowledgement will be provided
to the user.

Update Object:

x

: User

:Object

] updateObject(name, physicalName,description, attributes

validateFields()

updateCatalogue()

Updated

Object Updated

Figure 35: Update Object Diagram

In order to update any object which has been already added by the user, any field can be
changed and provided to be updated. If user do not change any fields and still wants to
update the object all the fields would remain same. If user changes any fields than all the
changes will be written to database and next time user will see the changes to that
action. On successful update user will be given a success acknowledgement.

Search Object:
D
-

p -

: User 10Hect

l searchObject(name) 1

getObject()

Object

validateObject()

Figure 36: Search Object Diagram

Object would be searched based on the provided name. Fields would be set to the
corresponding searched data and acknowledgement will be give to user on successful
search.

Policy Rule:
Add Policy Rule:

(
; :\
: User :PolicyRule :Catalogue

I addPolicyRule(name.descrlptlon.ruloPremise.consoqueneet’r

getCompoundConditions()

CompoundConditions

getSubsejcts ()

Subjects

getObjects()
Objects
getActions()

C S

e ValidateFields()
oA

Update_Catalogue()
Updated

PolicyRule Added

Figure 37: Add Policy Rule Diagram

User has to provide all the required parameters in order to add new Policy Rule to the
system. That will be performed in the class of Policy Rule which contains all the
required functions and attributes to perform this action. Consequences would be selected
by user by selecting all the available Subjects, Objects and Actions. Once all the fields
are validated, Policy Rule will be saved to the database and user will be given an
acknowledgement of successful addition.

Delete Policy Rule:

e e :PolicyRule :Catalogue

l deletePolicy Rule(nam 1

delete()

PolicyRule Deleted ‘

confirmDeletion()
i

Figure 38: Delete Object Diagram

Deletion of any Policy Rule will be made based on the provided name of the Policy
Rule. On successful deletion database would be updated and acknowledgement will be
provided to the user

Update Policy Rule:

s
updatePolicyRule(name, description, rulePremise, consequences) getCompoundConditions()
45 , description, rulePremise, consequer

CompoundConditions

getSubjects()
S

getObjects()
Objects

getActions()

Actions

validateFields ()

updateCatalogue()

PolicRule Updated Updated

Figure 39: Update Policy Rule Diagram

In order to update any Policy Rule which has been already added by the user, any field
can be changed and provided to be updated. If user do not change any fields and still
wants to update the Policy Rule all the fields would remain same. If user changes any
fields than all the changes will be written to database and next time user will see the
changes to that Policy Rule. On successful update user will be given a success
acknowledgement.

Search Policy Rule:

: User

:PolicyRule

| searchPolicyRule(nam {

getPolicyRule()

PolicyRule

validatePolicyRule()
el

PolicyRule

Figure 40: Search Policy Rule Diagram

Policy Rule would be searched based on the provided name. All the saved compound,
simple policies and actions will also be retrieved with the specific searched Compound
Policy. Fields would be set to the corresponding searched data and acknowledgement
will be give to user on successful search.

Simple Policy:
Add Simple Policy:
%2
AN

: User
| addSimplePolicy(name,description,rules) I

:SimplePolicy

getPolicyRules()

Policy Rules

ValidateFields()
B

updateCatalogue()
Updated

SimplePolicy Added

Figure 41: Add Simple Policy Diagram

61

User has to provide all the required parameters in order to add new Simple Policy to the
system. That will be performed in the class of Simple Policy which contains all the
required functions and attributes to perform this action. Rules will be retrieved from
database. These are rules which already added by the users. Once all the fields are
validated, Simple Policy will be saved to the database and user will be given an
acknowledgement of successful addition.

Update Simple Policy:

i sl 8 5
o N D———
Uk :SimplePolicy :Catalogue
i S e e

| updateSimplePolicy (name,description,rules)

getPolicyRules()

Policy Rules

ValidateFields()

e =l

updateCatalogue()

Updated

SimplePolicy Updated

Figure 42: Update Simple Policy Diagram

In order to update any Simple Policy which has been already added by the user, any
field can be changed and provided to be updated. If user do not change any fields and
still wants to update the Simple Policy all the fields would remain same. If user changes
any fields than all the changes will be written to database and next time user will see the
changes to that Simple Policy. On successful update user will be given a success
acknowledgement.

Delete Simple Policy:

—

%
,f"'/‘ N
 Laar :SimplePolicy

l deletSimplePolicy(nam

delete()

PolicyDeleted

confirmDeletion()

Figure 43: Delete Simple Policy Diagram

Deletion of any Simple Policy will be made based on the provided name of the Simple
Policy. On successful deletion database would be updated and acknowledgement will be

provided to the user.

Search Simple Policy:

:SimplePolicy

]searchSimplePolicy(na e)

getSimplePolicy()

SimpePolicy

validateSimplePolicy()
= =

SimplePolicy

Figure 44: Search Policy Rule Diagram

Simple Policy would be searched based on the provided name. All the saved Policy
Rules will also be retrieved with the specific searched simple policy. Fields would be set
to the corresponding searched data and acknowledgement will be give to user on
successful search.

Compound Policyl:
Add Compound Policy1:

S
S N

B sl L

l addCompoundPolicy1(name,deecﬁption,pollcy j

getSimpIsPollcy()

Simple Policy ,‘
getCompoundPolicy ()
Compound Policy

getCompoundCondition()

Compound Condition

ValidateFields()
=
updateCatalogue()

Updated

CompoundPolicy1 Added

Figure 45: Add Compound Policyl Diagram

User has to provide all the required parameters in order to add new Compound Policy 1
to the system. That will be performed in the class of Compound Policy 1 which contains
all the required functions and attributes to perform this action. Simple Policies and
Compound Policies will be retrieved from database to be selected by user to save a new
compound policy 1. Once all the fields are validated, Compound Policy 1 will be saved
to the database and user will be given an acknowledgement of successful addition.

Delete Compound Policy1l:

SR :CompoundPolicy 1 } [:Catalogue ‘

I deletCompoundPolicy(nam

delete()

PolicyDeleted J

confirmDeletion()
Bt

Figure 46: Delete Compound Policyl Diagram

Deletion of any Compound Policy 1 will be made based on the provided name of the
Compound Policy 1. On successful deletion database would be updated and
acknowledgement will be provided to the user.

Update Compound Policy1:

U e :CompoundPolicy 1 } ’ :Catalogue

| updateCompoundPolicy 1(name,description, policy) [

getSimplePolicy()

Simple Policy
getCompoundPolicy()

Compound Policy

getCompoundCondition()

Compound Condition

ValidateFields()
)
updateCatalogue()

Updated

CompoundPolicy1 Updated

Figure 47: Update Compound Policyl Diagram

In order to update any Compound Policy 1 which has been already added by the user,
any field can be changed and provided to be updated. If user do not change any fields
and still wants to update the Compound Policy 1 all the fields would remain same. If

65

user changes any fields than all the changes will be written to database and next time
user will see the changes to that Compound Policy 1. On successful update user will be
given a success acknowledgement.

Search Compound Policy1:

&

e

:CompoundPolicy1 :Catalogue

: User

kearchCom poundPolicy1 (nalgj_

getCompoundPolicy1(

CompoundPolicy1

validateCompoundPolicy 1()
—
CompoundPolicy 1

Figure 48: Search Compound Policyl Diagram

Compound Policy 1 would be searched based on the provided name. All the saved
compound and simple policies will also be retrieved with the specific searched
compound policy 1. Fields would be set to the corresponding searched data and
acknowledgement will be give to user on successful search.

Compound Policy2:
Add Compound Policy2:

I— :CompoundPolicy2 j :C;st‘alogue

: addCompoundPolicy2(name, description, policy.

getCompoundPolicy1()

CompoundPolicy1

ValidateFields ()

<

updateCatalogue()

Updated

CompoundPolicy2 Added

Figure 49: Add Compound Policy2 Diagram

User has to provide all the required parameters in order to add new Compound Policy 2
to the system. That will be performed in the class of Compound Policy 2 which contains
all the required functions and attributes to perform this action. Simple Policies and
Compound Policies will be retrieved from database to be selected by user to save a new

compound policy 2. Once all the fields are validated, Compound Policy 2 will be saved
to the database and user will be given an acknowledgement of successful addition.

Delete Compound Policy2:

s

- User :CompoundPolicy2 :Catalogue

] deletCompoundPolicy2(nam

delete()

PolicyDeleted
< Y

confirmDeletion()
D= —

Figure 50: Delete Compound Policy2 Diagram

67

Deletion of any Compound Policy 2 will be made based on the provided name of the
Compound Policy 2. On successful deletion database would be updated and
acknowledgement will be provided to the user.

Update Compound Policy2:

Ciiaee f :CompoundPolicy2] :cmdogua’]

J_ updateCompoundPoIicy2(name,descrlption.pol|cy

getCompoundPolicy 1()

CompoundPolicy 1

ValidateFields()
< i
updateCatalogue()
Updated

CompoundPolicy2 Updated

Figure 51: Update Compound Policy2 Diagram

In order to update any Compound Policy 2 which has been already added by the user,
any field can be changed and provided to be updated. If user do not change any fields
and still wants to update the Compound Policy 2 all the fields would remain same. If
user changes any fields than all the changes will be written to database and next time
user will see the changes to that Compound Policy 2. On successful update user will be
given a success acknowledgement.

Search Compound Policy2:

: User

\ :CompoundPolicy2 . :Catalogue

FearchCompoundPolicyZ(na e)l

getCompoundPolicy1

CompoundPolicy1

validateCompoundPolicy ()

CompoundPolicy2

<_A

Figure 52: Search Compound Policy2 Diagram

Compound Policy 2 would be searched based on the provided name. All the saved
compound and simple policies will also be retrieved with the specific searched
compound policy 2. Fields would be set to the corresponding searched data and
acknowledgement will be give to user on successful search.

Simple Condition:
Add Simple Condition:

&)
S

AR

ki :SimpleCondition

| addSimpleCondition(name,description, condition)._ |

ValidateFields()

Update_Catalogue()
=~

Updated /H
Simple Condition Added

Figure 53: Add Simple Condition Diagram

User has to provide all the required parameters in order to add new Simple Condition to
the system. That will be performed in the class of Simple Condition which contains all
the required functions and attributes to perform this action. Once all the fields are
validated, Simple Condition will be saved to the database and user will be given an
acknowledgement of successful addition.

Delete Simple Condition:

&)
s

: User

:SimpleCondition

|deleteSimpleCondition(name) |

delete()

SimpleConditionDeleted

confirmDeletion()
~<-—-:]

Figure 54: Delete Simple Condition Diagram

70

Update Simple Condition:
O

-

// b

: User

[:SimpleCondlﬁon

l updateSimpleCondition(name, description,condition) I

~ValidateFields()

e
Update_Catalogue()

Simple Condition Updated

Figure 55: Update Simple Condition Diagram

In order to update any Simple Condition which has been already added by the user, any
field can be changed and provided to be updated. If user do not change any fields and
still wants to update the Simple Condition all the fields would remain same. If user
changes any fields than all the changes will be written to database and next time user
will see the changes to that Simple Condition. On successful update user will be given a
success acknowledgement.

Search Simple Condition:

(B,
.

: User

) -SimpleCondition :Catalogue

FearchSi mpIeCondition(nar%eZ{

getSimpleCondition()

Simple Condition

validateSimpleCondition()
e

Simple Condition

Figure 56: Search Simple Condition Diagram

Simple Condition would be searched based on the provided name. Fields would be set to
the corresponding searched data and acknowledgement will be give to user on successful

search.

Compound Condition:
Add Compound Condition:

%

e :
i :CompoundCondition J :Catalogue

_EddOompoundCondition(nama,description, conditi

getCompoundCondition()

CompoundCondition
getSimpleCondition()

SimpleCondition

ValidateFields()
B

updateCatalogue()
Updated

CompoundCondition Added

Figure 57: Add Compound Condition Diagram

To add a new compound condition, all the fields provided with name. Before doing this
action all the saved compound conditions and simple condition will be retrieved from
database so that use can select anyone of them. Once all the fields are provided,
compound condition would be added to database and successful addition is
acknowledged to the user.

Delete Compound Condition:

(0

o
i

- :CompoundCondition

l deleteCompoundCondition(name)

delete()

CompoundConditionDelet

confirmDeletion()
e]

Figure 58: Delete Compound Condition Diagram

Deletion of compound condition would be made based on provided name of compound
condition. This is the function of the class Compound Condition. All the data would be
updated in the database as well and acknowledgement would also be give to the user on
successful deletion.

Update Compound Condition:
X ,_,8:_ r:compoundCondmoiJ :Catalogu::l

| updateCompoundCondition(name, description,conditio !

getCom poundCondition()

CompoundCondition
getSimpleCondition()

SimpleCondition

ValidateFields()
i3
updateCatalogue()

Updated

CompoundCondition Updated

Figure 59: Update Compound Condition Diagram

In order to update any Compound Condition which has been already added by the user,
any field can be changed and provided to be updated. If user do not change any fields
and still wants to update the Compound Condition all the fields would remain same. If
user changes any fields than all the changes will be written to database and next time
user will see the changes to that Compound Condition. On successful update user will be
given a success acknowledgement.

Search Compound Condition:

e
: User ‘ :CompoundCondition

l searchCompoundCondition(name, D qj
getCompoundCondition()

Compound Condition

validateCompoundCondition()
é:]

Compound Condition

Figure 60: Search Compound Condition Diagram

Compound condition would be searched based on the provided name. All the saved

compound conditions will also be retrieved with the specific searched compound
condition. Fields would be set to the corresponding searched data and acknowledgement
will be give to user on successful search.

5-5-Flow Char of Policy Editor for SANTA:

Figure 61: Flow chart for the system

User will have all the options at start to perform any activity for security policy. Flow
chart above demonstrates the entire flow of the system and exits only on successful
activity. The system enables the user to start with any activity regarding subjects,

objects, actions, policies and conditions.

5-6-Summary
In this chapter, we analyzed and designed Policy Editor. It was analyzed by using UML
notation. The analysis of the system requirements is very important to understand what

the system needs and how it works. The system has 9 interfaces and each one has

different function. So we designed these interfaces to be implemented as specified.

http://www.tcpdf.org

o
0.0

*

inghigll yla

DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

A web-based policy editor for SANTA 1Ulgusll

Al Mutairi, Abd Algder ooyl @laoll

Siewe, Francois(Supervisor) VICY IOUPY 73

2009 oS> Maodl 2o,

Leicester 1890

1-105 1olxaall

687206 :MD 38,

&zol> Jlw, ' Sgizall g9

English :axlll

riow>lo allw, ragolell a)all

De Montfort University a0l

Faculty of Computing Sciences and Engineering ra sl
Lol 1ol

Dissertations 1logleoll aclgd

2wl) (o, Y (Oleeo sl dwiid silogleoll oVl :&olgo
https://search.mandumah.com/Record/687206 ol

abbgazo gzl gro> anshaiall ls 2019 ©

plaziwlW 8sloll 0is aclb ol Jeozi Sy abgaxo yiull Bea> gro> Ol lole oyl JsbyLui 2o gdgoll Byl (sle sly aslio 83lo)l 0in
s ol idl Bgi> wlol oo wsbas zural Vs (g SIVI 3l ol iVl gdlgo Jio) @lws Sl e il ol Jigmdl ol duwsdl gioug nid swazeadl

ol Lalu Zyl_ﬂbl

.aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/687206

i sl G -~

R . e

bl alliasa il

T

ol - s e sl

-

il

Chapter 6: Implementation

6-1-Overview:
This chapter will describe the implementation details by demonstrating the system

screenshots and description of how to use the system and tools. This chapter illustrates
the main system requirements for the Policy Editor. All the screen shots of system will
represents the GUI of the system.

6-2-System Requirements [Client Side]:
Client can be on any platform with the following installations.
e Any Web Browser

e Internet Information Server (IIS).

Architectural Overview of System:

Policy Editor for SANTA has been developed under the architectural environment
and 3-Tier architecture has been implemented. System has been divided into three
main layers which are independent of each other. If any change made at any level it
will not affect any other level of architecture. Tiers are implemented in ASP.NET
and Ms SQL Server. Design tier is developed using the MS Visual Studio 2008 and
basic GUI is designed using the dedicated and provided controls of ASP.NET. GUI
is the first tier of the system to which user has to interact in order to use the system.
Second tier is business logic which is the core to the 3-Tier of system. Business logic
is developed using C# as a language which is called Code Behind in .Net. Business
logic is directly associated with GUI and is integrated to connect to the DB layer of
the system. The third and last layer of the system is Database layer which contains
the database used in the system. .Net provides the libraries to integrate the
application with database at abstract level. Developer just uses these libraries for
database integration.

We will discuss our 3-Tier with a Sample Problem demonstration which will be the
part of our developed system. For example, lest discuss the Action section of our
system...

GUI Tier:

it cs| s

LS

.0 from Mitrosoft Corperation
NET Component

£ | Create and Manage Actions _
. fEs :

g ichangeBadkground | [
Description: | Sitemap

: J ¢ s Contact Us 5
s o
: Executable Code: Subjects

No Of Parameters: Objects
= Access ‘lvpe:I Read e Actions

Policy Rules

Simple Polies

Compound Policies 1
Palotn | Coneeb 1. f el f 5

The screenshot above shows the main designs view of the Action page where user
has been provided with the set of controls to use. On the left pane, we selected text
box to be used in our page which can use used by drag and drop. So, this is the main
idea how to use the controls during the design of any webpage. This is how all the
pages have been designed for Policy Editor. This is the GUI Tier of the System from

the architectural point of view.

Business LoE'c Tier:

File Edit View Refactor Webste Build Debug Tooks Test Window Help
PRt DR R = e T b 3 S HRAEEa-,
{ AR

sisllten oy i Ml e st

v $9Page_Load{cbject sender, Eventirgs &)

4 n;xéw Systen;
using System.Collections;
using System.Configuration;
1 using System,Data;
4 A using System.Ling;
using System,Web:
" using System.Web.3ecurity;
| using System,Web.UI;
| asing System.Web.UI.HemlControls:
| using System.Web.UI.WebContzols:
using System.Web.UI.WebControls WebParcs;
Lyusing System.Xml.Ling:

]

9BiA BSEIG B 19IBIAA URRTOS el

SaRiadoid L7

| Epoblic partial class Action i System.Web.UI.Page
} 0ot ;
i public static int Flag = O: B
i
; B procected void Page Load{cbject sender, Iventirys !
{
tacName Avcributes.hdd ("auto
§ txtParamster.Actribuces.Add(
txtExecutableCode Attributes.Add (*
txtFarameter Astributes.Add("au
brnDelete,Attribuces. Add("on
Page.SetFocus (txtName) ;

T

: | S }
g = protected void btnSave Click(object sender, Iventirge
4 | {
if (txtWame.Text.Trim{) == *7)
1

1blError.Text = "Some Information missing.":
1blZrror.Visible = true;

W2 i o3 .

The screenshot above shows the main code behind file for the Action page. This is i
| where main business logic for Action has been developed. On the top all the required ;

libraries has been added and some of the libraries are basic which are provided by
default by .Net. For example, in order to use the database related components we
have to add the library System.Data and it contains the System.Data.SqlClient
component for database connectivity. In the code behind file we connect to the
classes which provide the functionality of connecting to the database. We are using
the Web.Config which contains all the configuration setting. Most frequently used
configuration in our system is database connection which has been provided in using
the Connection String and that Connection String is used in the business logic for
data integration.

File for Policy Editor is as follows...

Hote: As an altermative to hand editing thia file you can use the
web admin tool to configure settings for your spplication. Use
the Website->Asp.Ner Configuration oprion in Yispal Studio.

A full list of settings and comments can be found in
machine.config,comeentz usually locatad in

\ \Microsofu.Net ¥\v2.x\Config

B <configuration>
<configSections> -
<sectionGroup name="system.veb type! Web . Cont: i Systet.Neb, 3 .5.0.0, Culture {78
<sectionGroup name type="Sy Web . C System.Web, Extenaions, ion=3.5.0.0, Cul 1, PublicKeyl £
BT Typew! Web ., lerSecti System,Web, Extensions, Version=3.5.0.0, Qi §

<sectionGroup name=*vebServices” types". Web.Cont. 5 System.Wed Version=3.5.0.9, Cul e
<section name Type="Sy Web, Confi on, System.Web.Extensions, Version=3.5.0.0, Cultuves >
name=" Type™ .Web.Configuration.ScripringProfileServiceSection, System.Web.Extensions, +5.0.0, Cull
nane™ ice® Typ .Web.Configuration, System.Web.Extensions, Version=3.5.0.0,
<section name="roleService® types®: Web . Confi ipi System. Web.Extensions, Version=3,5.0.0, Culturesnsutral, Pub
</sectionGroup> £
</sectionGroup>
</secrionGroupy
</contigSections>
<appSettinga/>

<connectiondtringa>

</connectionStrings>

<system.web>
<1-—<anonymousldentification ensbled ="true"/>--»
<i-—<pages theme ="Theme"/>-->

, ~ wa _ om o
Above is the configuration file and the highlighted line shows the database
connection configuration which has been used throughout the application.
Database Tier:

* Entes inform
choose 3 different data source and/of provides.

 Microsoft SQL Server (SqiClient)

As we discussed that SQL Server is integrated with .Net framework. It facilitates the
developers by providing a proper interface where any modifications can be made to
the databases. The screenshot above shows how to connect to the database before
using it in Ms Visual Studio. Pane on the left side shows the database connection to
be made or already made. Once use connected to the database and connection is
successful then he/she can modify the database in the provided IDE. The main IDE
for modification is as follows...

Lomoa
%

i

i
?

AN P AT
SespesetessesssRes &6 58
il 07 58

Mﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ?

] Allow Netic

i DataType

{

1 Defsut Value or Binding

Above screenshot shows how user been provided with the IDE to perform any action
on the database.

Policy Editor

Security is one of the significant matters that all
dnmiac.uk organizations consider when building thew
DE MONTFDRI‘ gystem. It can protect their system against
u“lvmm internal and extemal threats., Therefore,
LEICESTER developers understood the importance of security
which leads them to consider the security from the
early stage of the system development. The successful implementation of security
can be achieved by constructing a fine security policy. It can help to decrease the
number of the threat that result from undesirable use of organization resources.
SANTA is language for specifying security polices such as authorization and
obligation policies. It is developed in the Software Technology Research
Laboratory(STRL) at DML, It is used to specify and analyze security policies using
a run-time verification tool called Tempura. So the maim problem that might face
the user for building his security policy in SANTA is the difficulty of the SANTA
tanguage. It is used by spedialist user to create and manage security policies. It is
not easy for non specialist user to understand. Therefore, it is interesting problem
for ma bacause it encourages me to find the solution to let the simpie user to take
advantage from this language. From this point, | designed and implemented 3
user-friendly web-based policy editor. Policy Editor for SANTA is 3 system that
facilitates the users to manage Subjects, Objects and Actions. It also facilitates
the users to manage the Conditions/Pradicates, and Policies. Systems reveals to
the users a proper web interface and let the users to Save, Update, Delete and
Search these manageable activates to and from database.

Subject
Cbject
Action
Policy
Condition

Subjects

Objects

Actions

Policy Rules

Simple Policies
Compound Policies 1
Compound Policies 2
Simple Conditions
Compound Conditions

Figure 62: Client View of System Screen

6-3-System Requirements [Server Side|:

Policy Editor for SANTA will run on any windows platform above Windows 98.
Following tools and technologies need to be installed before running the system.
e Service Pack 1 and Service Pack 2.

¢ Internet Information Server (IIS).

e Microsoft Visual Studio 2008 Express Edition or Microsoft Visual
Developer 2008 Express Edition.
SQL Server 2005 as Database Server.

e Any Web Browser.

To run the system, just host it to the Web Server following the above mentioned tools
and components. The Screenshots below shows how to run the Policy Editor.

6-4-Building/Compiling the System:

Sl

O -

alsociliancical

bl

File Edt View Project Buld Debug Tools Test Window Help

Policy Editor
Seourity is one of the significant matters that all
organizations consider when buiiding their

dmu.ac.uk

umn‘ system, It can protect their system agamst
UNNERSITY intemal and extemal threats, Therefore,
LEICESTER developers understood the importance of
security which leads them to consider the
secunty from the eary stage of the system development. The successful
implementation of security can be achieved by constructing 3 fine security policy.
It can help to decrease the number of the threat that result from undesirable use
of organization resources. SANTA is language for spacifying secunty polives such
as authorization and obligation policies. It is developed in the Software
Technology Research Laboratory(STRL) at DMU. It is used to specify and analyze
security poliies using 3 run-time verification tool calfed Tempura. So the main
probiem that might face the user for building his security policy in SANTA is the
difficulty of the SANTA language. Jt is used by spedalist user to create and
manage security policies. It is not easy for non spedialist user to understand.
interasting probiem for me because it encourages me to find the

)

Subject
Object
Action
Policy
Condition
Subjects
Objects
Actions
Policy Rules
Simple Polic

8} CompoundPolicy2aspx.cs
1 contactus.aspx
% contactus.aspucs

Figure 63: Compiling the System Screen

bug free and ready to run.

6-5-Running the System:

To build or compile the system simple right click the main project file and select the

Build Website Option. This will build the website and confirms that website is error and

e

| |
1 B
| i
4
853
3 Solution PE' {1 project)
: @ v I
E 13
153
] :
: 9
i
&
E €
3 =3
E s
Policy Editor
= Security is one of the significant matters that ail sub
1 organizations consider when building their %
L Object

systam. R can protect their system against
imemnal and extemal threats, Therefore
deveiopers understood the importance of
secunity which leads them to consider the
securty from the early stage of the system development. The successful
implementation of security can be achieved by constructing a fine security policy.

Action
Pokiey

Condition

It can help to decrease the number of the threat that result from undesirable use —
of organization resources, SANTA is language for specifying secunity policies such
3 as authorization and obligation policies. It is developed in the Software
Technology Research Laboratory{STRL) at DM, It is used to specfy and analyze SAbjute i
security policies using 3 run-tima verification tool called Tempura. So the main Objects
=, problem that might face the user for building his security policy in SANTA is the Actons %
difficuity of the SANTA language. It is used by spedalist user to create and Policy Rules 1
= manage security polidies. It is not easy for non specialist user to understand. 2
: ol e £ o etofindthe ook Poides
; Figure 64: Running the System Screen
After Building or Compiling the website, next step is to run or execute it. To run or
: execute, right click on the main project file and select the View in Browser option. This
: will launch the website into the browser. 1
;‘ 4

b

i

il
sty

6-6-Policy Editor Screen Shots:
Main Page:

Policy Editor

Security is one of the sigrificant matters that al
dmuacuk organizations consider when buiding their
HON‘I'FORT system. It can protect thew system sganst
UNWERSITY internal and extemal threats, Therefore,
developers understood the importance of security
which leads them to consider the security from the
early stage of the system ! . The successful i of security
can be achieved by constructing a fine security policy. It can help to decrease the
number of the threat that result from undesirable use of organization resources. —
SANTA is language for specifying security policies such as authorzatien and
obligation polides. It is developed in the Software Technology Research Sub .
Laboratory(STRL) at DMU. It is used to specify and analyze security policies using
a runime verification tool called Tempura. So the main problem that might face Objects
the user for building his security policy in SANTA is the difficulty of the SANTA Actions
fanguage. 1t is used by specalist user to create and manage secunity policies. It is Policy Rules
not easy for non specialist user to understand. Therefore, it is interesting problem k
for me because it encourages me to find the soltion to let the simple user to take Simple Policies
advantage from this language. From this point, [designed and implementad 2 Compound Poficies 1
user-friendly web-based policy editor. Policy Editor for SANTA is 3 system that Compound Policies 2
faclitates the users to manage Subjects, Objects and Actions. It also faciitates Simple Conditions
the users to manage the Conditions/Predicates, and Policies. Systems reveals to
the users a praper web interface and let the users to Save, Update, Delete and Comgpound Condtions
& activates to and from database.

Figure 65:Main Page Screen

Here user can select any option to perform the activities. For example, after selecting the

Subject menu user will be redirected to the subject page where he/she can

add/delete/update and search the subjects. Same activities can be performed by selecting

any of the menus at main page. Following screen shots will describe the pages and their

functionalities.

Subject

{7 = Subject=
€ 3 £ & nitpy/localhost12375/9F Subject aspy
1 Customize Links

Create and Manage Subjects _

Name:
Action
Policy

Subjects

Objects

Actions

Policy Rules
ij@;&:‘!@‘jj Simple Policies
Compound Polices 1
Compound Policaes 2
Simple Conditions
Compound Conditions

[Cloar][Save][Update [Delete |{ Search |

Figure 66: Subject Screen

All the fields would be provided to Add or update the Subject. If user wants to search

the already saved subject he/she had to provide the subject name and system will return

all the information based on that name. After searching user can update or delete the

searched subject. User cannot add more than one subject with the same name.

[= Object
& & C 1 hiplocalhost 1
[Customize Links

Create and Manage Objects

Name:
Physical Name:
Description: Policy

Subjects
Objects
Actions
Palicy Rules
l@ﬁm; Simple Policies

Compound Polices 1

1 1].) Compound Policies 2

% w S w ‘ felon L‘m Simple Conditions

Compound Conditions

Figure 67: Object Screen

All the fields would be provided to Add or update the Object. If user wants to search the

already saved subject he/she had to provide the object name and system will return all

the information based on that name. After searching user can update or delete the

searched object. User cannot add more than one object with the same name.

S Oy httpy/localhost12375/PE/Action.aspx
[Customize Links

Create and Manage Actions —
Name:

g T

Subjects
Objects
Actions
Executable Code:’ MG 5 Palicy Rufes
No Of Parameters: Simple Policies

Access Type: Read v Compound Policies 1
Compound Policies 2
Simple Conditions

(M ;i “Save || WE&; ‘lrw] Compound Conditions

[y

Figure 68: Action Screen

All the fields would be provided to Add or update an Action. If user wants to search the
already saved subject he/she had to provide an action name and system will return all the
information based on that name. After searching user can update or delete the searched

action. User cannot add more than one action with the same name.

Create and Manage Policy Rules

Mame
Description:

subjects

Obgents

Amans

Pobey Rubes

Simple Pokioes
Compaund Pelitas 1
Compound Policies 2
simpie Condtions
Cumpound Cotsdieons

Figure 69: Policy Rule Screen

At first in the consequences field all the saved Subjects, Objects and Actions will be

shown to the user. User can select anyone of his/her choice. All the fields would be

provided to Add or update the Policy Rule. If user wants to search the already saved

subject he/she had to provide the Policy Rule name and system will return all the

information based on that name. After searching user can update or delete the searched

Policy Rule. User cannot add more than one Policy Rules with the same name.

Simple Policy:

Create and Manage Simple Policies

Name:
Description:

e o=

PoiicyRuls2 (2 Subjects

i (3] Objects
Actions
Poficy Rules
Simple Policies
Compound Policies 1
Compound Polices 2
ERENCT NN b e

R = | seascsiana i)
Compound Conditions

policyRule5
PolicyRule3

Figure 70:Simple Policy Screen

At first in the rules field all the saved policy rules will be shown to the user. User can
select/deselect anyone or more than one of his/her choice. All the fields would be
provided to Add or update the Simple Policy. If user wants to search the already saved
Simple Policy he/she had to provide the Simple Policy name and system will return all
the information based on that name. After searching user can update or delete the
searched Simple Policy. User cannot add more than one Simple Policies with the same

name.

Compound Policyl:

& 9 € <y nipy/locathost 12375 /PE/CompoundPolicyLaspx
[Customize Links

Create and Manage Compound Policies 1 e~

Subject
Name: Object
Description: B) ; Action
Palicy

e e T
{Simple Poicy < ...>, -1 2] subjects
Objects
Adtions
Policy Rules
Simple Policies
Compound Policies 1
Compound Policies 2
Simple Conditions
Compound Conditions

Figure 71: Compound Policyl Screen

At first in the policy field all the fields would be hidden, User can press any of the
buttons under the policy to add the compound policyl. Depending on the user selection,
all the simple and compound policies will be shown to the user where user can select
one of his own choices to define a new compound policy. All the fields would be

provided to Add or update the Compound Policy1. If user wants to search the already

saved Compound Policy1 he/she had to provide the Compound Policyl name and

system will return all the information based on that name. After searching user can

update or delete the searched Compound Policy1. User cannot add more than one

Compound Policyl with the same name.

€ 5 O 1 nipilocathost12375/PE/CompoundPolicy2 aspx
[Customize Links

Create and Manage Compound Policies 2

Name:

Subjects

Objects

Actions

Policy Rules

Simple Policies
Compound Policies 1
Compound Policies 2
Simpie Conditions
Compound Conditions

Figure 72: Compound Policy2 Screen

At first in the policy field all the saved compound and simple policies will be shown to
the user. User can select/deselect anyone or more than one of his/her choice. All the
fields would be provided to Add or update the Compound Policy2. If user wants to
search the already saved Compound Policy2 he/she had to provide the Compound

Policy2 name and system will return all the information based on that name. After

searching user can update or delete the searched Compound Policy2. User cannot add

more than one Compound Policy2 with the same name.

i sioncsiia

Simple Condition:

[= Simple Condition =
€ 5 € & mo/locahostiz3
1} Customize Links

Create and Manage Simple Conditions

Name:
Description:’

Subjects
Objects
Actons

STy

4

Poicy Rules

Simple Policies
Compound Policies §
Compound Policies 2
Simple Conditions
Compound Conditions

Figure 73: Simple Condition Screen

All the fields would be provided to Add or update a Simple Condition. If user wants to
search the already saved Simple Condition he/she had to provide an action name and

system will return all the information based on that name. After searching user can

update or delete the searched Simple Condition. User cannot add more than one Simple

Condition with the same name.

Create and Manage Compound Conditions

Name:
Description:

Subjects
Objects
Actions 3
Policy Rules
Simple Policies
Compound Policies 1 =
Compound Polices 2
Simple Condibons
Compound Conditions

Figure 74: Compound Condition Screen

At first in the conditions field all the saved compound and simple conditions will be

shown to the user. User can select/deselect anyone or more than one of his/her choice

and user will be forced to put maximum one logical condition between any two selected

conditions. All the fields would be provided to Add or update the Compound Condition.

If user wants to search the already saved Compound Condition he/she had to provide the

.

Compound Condition name and system will return all the information based on that

name. After searching user can update or delete the searched Compound Condition. User

cannot add more than one Compound Condition with the same name.

T PR

View All:

itp:/ locathost 1 2375/PE Niewdlt aspr
Select to View: Simple Policies __|v)

* Simple Policy
* policyl

* simplepolicy2
* simplepolicy6

fity is one of the significant matters that ai
izations consider when building their
It can protect ther system aganst
pal and extemal threats. Therefore,
opers understood the importance of seaurity
leads them to consider the security from the
. The successful implementation of security
@ security policy. It can help to decrease the
undesirable use of organization resources. —
bsecurity policies such as authonzation and
¢ in the Software Technology Research subjects
™ 4 o to specify and analyze security policies using i
a2 run-tima verification tool called Tempura. So the main problem that might face Objects
the user for buiiding his security policy in SANTA is the difficulty of the SANTA Actions
language. Tt is used by speciafist user to create and manage security pokides. It is Policy Rules
not 2asy for nor: specialist user to understand, Therefere, it is interesting probiem
for me because it encourages me to find the solution to let the simple user to take Simpie Policies
advantage from this language, From this point, | designed and implemanted a Compound Policies 1
user-friendly web-based policy editor. Policy Editor for SANTA is a system that Compound Policies 2
facilitates the users to manage Subjects, Objects and Actions. It also faciitates & Conditio
the users to manage the Conditions/Predicates, and Policies, Systems raveals to S Conpsions
the users @ proper web interface and let the users to Save, Update, Delete and Compound Condtions
Search these manageable activates to and from datsbase.

Figure 75: View All Screen

On this interface user has been facilitated to view the already existing Subjects, Objects,

Actions, Policies and Conditions. After clicking any link under the heading of View All

user will be prompted to a new window where he/she can select option to view anything

which already saved to the database. This is useful to make the new users view anything

they want to.

B
€3 .C ﬁ’»ﬂr'.g.f"bcalmv,}’z?__‘ FA
1) Customize Links

Frequently Asked Questions

What is SANTA Policy Editor 7

SANTA is a language for specifying security poliies such as authorisation and
obligation policies. SANTA is developed in the Software Technology Research
Laboratory (STRL) at DMU and is used to spedfy and analyse secunity polices
using 3 run-time verification teol called Tempura. The aim of this Projectis to
design and implement 3 user-friendly web-based policy editer that alflows non
spedcialist users to create and manage security poiicies for SANTA. This project
will prove the users with a proper interface where they can easily creste,
update, delete and search the new and already created polices. These polides
are based on the notien of Subject, Object and Action, A subject is assuming to
ba an active entity that can perform and action on an objact or another subject.
An object is 3 passive entity that stores some data, e.g. a file, a storage device
or a profile. An action is an operation that can be pesformed on objects of
subjects, .. read a file, append to a file, withdraw money from a bank account
and 50 on. An authorisation policy states for each pair (subject, object) the
actions the subject is allowad to perform on the object and under which
conditions, An Obligation policy states what action must be taken when speafic
events oceurs, In this project, we assume a finite set of subject S, a finte set of
object O and a finite set of actions A. Policy Editor for SANTA is a system that
faciltates the users ta manage Subjects, Objects and Actions. 1t also fadiitates
the users to manage the Conditions/Predicates, and Policies. Systems reveals to
the users a proper web interface and let the users to Save, Update, Delete and
Search these managaable activates to and from database,

Figure 76: FAQs Screen

On this interface user can find any information which answers WHAT and HOW

questions. On the FAQs page user has been given guidance about all the entities

(Subject, Object, Actions, Policies, Conditions) of the system. User can select any entity

from the links under heading of FAQs and then he/she would be redirected to the FAQs

page.

& 9 C % nup/focalhost12375/PE/sitemap.asox

Sitemap

- Pelicy Editor for SANTA
| Lsubject
& Object
;. Lobject
&-Action
i Laction
&-Policy
| fvoncv Rule
| |-simple Poive
Compound Policy 1
\-Compound Policy 2

This interface shows the entire website sitemap.

Contact Us:

Contact Us
Sali s

Hame. Abtulasder Almiaic
Phone! (7 L FB82/574
Dudom port University.

Sead Us Ewmall

Ema Address
Subjest:
Comments

Aeicauier, Urited sinadon.

Subjects

Objects

Actions

Palicy Rules

Simple Policies
Compound Policies 1
Compound Poficies 2
Simple Condibons
Compound Conditions

Figure 77: Site Map Screen

Sy ects

Obgects

Aong

Poliy Rutes

Sumote Pobams
Compound Polkies 1
Compourd Pobows 2
Tmpts Conarions
Compours Condions

Figure 78: Contact US Screen

e

On this interface user can contact with the concerned authority through phone or email.
User has been provided with a proper interface to contact via email. User will be

responded on the provided email address which is a field in the form.

6-7-Summary:

In this chapter, the system was implemented based on the specification discussed in the

earlier chapter. So the simple user can create and manage his policy easily. In addition,
he/she can do some functionality on the policy created such as save, delete, update and

search.

http://www.tcpdf.org

0‘>‘.f

4

inghigll yla

DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

A web-based policy editor for SANTA 1Ulgusll

Al Mutairi, Abd Algder ooyl @laoll

Siewe, Francois(Supervisor) VICY IOVPY 73

2009 oS> Maodl 2o,

Leicester 1890

1-105 1olxaall

687206 :MD 3,

&zol> Jlw, rSgizall g9

English :axlll

iow>lo allw, ragolell as)all

De Montfort University a0l

Faculty of Computing Sciences and Engineering ra sl
Lslay :aJgll

Dissertations 1logleoll aclgd

2wl) (o, Y (Oleeo sl dwiid silogleoll oVl :&olgo
https://search.mandumah.com/Record/687206 ol

abbgazo gzl gro> anslaiall ls 2019 ©

plaziwl bsloll 03s aclb ol Jsozi cliSey .abgazo ,inidl Sgi> grax 0l lale ouinidl Bsi> wlol go gsall SwYl sle sly aslio 83lo)l 0is
oI o il (9> Clal oo osdas gy e 0o (o SVl 35l ol iVl g8lgn Jio) aliaws ST uc il ol Juomeill of Gramill ginug s szl

ol Lalu Zyl_ﬂbl

aoglaioll

www.maharaa.com

https://search.mandumah.com/Record/687206

Chapter 7: Testing and Evaluation

7-1- Overview:
This chapter describes the techniques used for the testing of Policy Editor for SANTA.

Main focus is on Black Box and White Box Testing. As system is not very much
complex in nature, these testing techniques are more suitable. These techniques enable

to do the testing at both user and client end by considering all functional requirements.

7-2-Black Box Testing:
Black box testing is to test the system externally without going into details. This only

requires the number of inputs to be used as test data and testers determine the output
according to the specifications. The tests can be functional or non-functional, but usually

black box testing is used for functional perspectives.

7-3- White Box Testing:

White box testing is to test the system both externally and internally considering all the
details and states of the system at any given time. User does has to be focused on only
inputs and outputs as test data but also test the flow of execution paths. For examples,
the entire life time of an object and its attributes and functions. White box testing can
target both functional and non-functional aspects of the system. This usually is been

done at development team side.

7-4-Functional Testing

Sample Test Case:

Test Case

Description

Expected
Result

Actual Result

T1_Add Subject

Precondition: User is on the
Subject Page and Provided
All required Fields to Add

the Subject.
Enter: Press the Save Button.

Subject
Added
Successfully.

Subject Added Successfully.

T2 Add Subject

Precondition: User is on the
Subject Page and Provided
All required Fields to Add

the Subject and User
Provided the already saved
Subject Name.

Enter: Press the Save Button

Subject with
same name
already exists.

Subject with same name
already exists.

Table2: Test Case

7-5-Acceptance Testing:
Acceptance testing is done at the user end by considering the Project Supervisor as end
user. This testing was successful and user was satisfied with the functionalities of the

system.

7-6- Evaluation

Overall the system was evaluated as successful and provided all the desired
functionalities. The functional, Acceptance testing concluded that the user was able to
use the system in a very friendly manner and has got the desired results. A survey has
been conducted by considering the participants as anonymous users. Following areas
were the targets of survey.

I. Design of the System

2. Functionality according to Requirement Specifications

3. Ease of Understanding the System
7-6-1-Design of the System: [GUI]

The GUI (Graphical User Interface) and its cosmetics have been evaluated above
average. Most of the male participants appreciated the design of the system by
considering the professional GUI layouts. According to them the system’s look and feel
is professional and it makes feel the users that they are using a professional well
designed and simple website. On the other hand, many female participants ranked the
system design or GUI as average. They were very much concerned about the cosmetics
of the system. The suggestions were given to add more contents and make it more
colourful. At the end female participants were satisfied with the current GUI of the
system which makes the overall evaluation of the system GUI above average. Moreover,
complexity of system design is at very good level which means that any anonymous user
with very little understand can use the system because of the fact that system GUI is
simple and understandable and proper guide has been provided about how to use the
system which can be found in FAQ section. This fact has been ranked very high by the
participants.

Overall Evaluation Score: 70% Satisfied

7-6-2-Functionality according to Requirement Specifications:

The functional aspects of the system have been considered most important part.
Participants have been given free hands to evaluate the functionality of the system. They

were asked to been more keen and keep testing approach of to evaluate these functional

aspects of the system. According to the participants, evaluation of the overall

functionality of the system was regarded as excellent. We considered two to three
100

professionals for the evaluation of the functionality of system. Proper training was given
about How and what concerns of system. Most of the participants were fully satisfied
about the requirements communicated to them and the functionality of the system.
According to them the current functionality of the system fully justifies the
requirements. The flexibility and reusability of the system is much appreciated as it was
communicated by considering the black box aspects of the system. Few suggestions
were also given from the professional participants to improve the consistency,
availability and durability of the system, which are in fact non-functional aspects of the
system. But we will consider all the suggestions and comments to make the system
robust and reliable. All these are considered as future works for system. Moreover, the
level of complexity of the system, all the functional aspects can be easily understood and
absorbed by anonymous users. Participants have also appreciated the technology used to

develop the system which is state of art technology for both application development

and database development. Overall the evaluation score of functional aspects of the

system is excellent. Above 90 percent of the participants were satisfied with the
functionality of the system.
Overall Evaluation Score: Above 90% Satisfied.

7-6-3-Ease of Understanding the System:

This section is very important from the end user point of view because we have
considered the user of the system non-specialist and anonymous. The participants of this
section were from different domains of the computer science. Participants were
communicated about how they can use the system with maximum ease of use. After they
use the system they found it very user friendly and easy to use. Most of the participants
take no time to get familiar with system. The overall ranking for this section was
excellent.

Overall Evaluation Score: Above 90% Satisfied

7-7-Summary

In this chapter, the system was tested by using the black and white box tools.

In addition the system was evaluated by using the questionnaire method and the results

are satisfied.

http://www.tcpdf.org

0‘>‘.f

4

inghigll yla

DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

A web-based policy editor for SANTA 1Ulgusll

Al Mutairi, Abd Algder ooyl @laoll

Siewe, Francois(Supervisor) VICY IOVPY 73

2009 oS> Maodl 2o,

Leicester 1890

1-105 1olxaall

687206 :MD 3,

&zol> Jlw, rSgizall g9

English :axlll

iow>lo allw, ragolell as)all

De Montfort University a0l

Faculty of Computing Sciences and Engineering ra sl
Lslay :aJgll

Dissertations 1logleoll aclgd

2wl) (o, Y (Oleeo sl dwiid silogleoll oVl :&olgo
https://search.mandumah.com/Record/687206 ol

abbgazo gzl gro> anslaiall ls 2019 ©

plaziwl bsloll 03s aclb ol Jsozi cliSey .abgazo ,inidl Sgi> grax 0l lale ouinidl Bsi> wlol go gsall SwYl sle sly aslio 83lo)l 0is
oI o il (9> Clal oo osdas gy e 0o (o SVl 35l ol iVl g8lgn Jio) aliaws ST uc il ol Juomeill of Gramill ginug s szl

ol Lalu Zyl_ﬂbl

aoglaioll

www.maharaa.com

https://search.mandumah.com/Record/687206

W

Chapter 8: Conclusion and Future Work

8-1-Conclusion

In this project, we have focused on the importance of the security policy in the system.
The successful implementation of security can be achieved by constructing a fine
security policy. It can help to decrease the number of the threat that result from
undesirable use of organization resources.

The overall aim of this Project was to design and implement a user-friendly web-based
policy editor that allows non specialist users to create and manage security policies for
SANTA.

SANTA is a language for specifying security policies such as authorization and
obligation policies. This project proved the users with a proper interface where they can
easily create, update, delete and search the new and already created polices. These
policies are based on the notion of Subject, Object and Action. A subject is assuming to
be an active entity that can perform and action on an object or another subject. An object
is a passive entity that stores some data, e.g. a file, a storage device or a profile. An
action is an operation that can be performed on objects of subjects, e.g. read a file,
append to a file, withdraw money from a bank account and so on.

An authorization policy states for each pair (subject, object) the actions the subject is
allowed to perform on the object and under which conditions. An Obligation policy
states what action must be taken when specific events occurs. In this project, we
assumed a finite set of subject S, a finite set of object O and a finite set of actions A4.
Policy Editor for SANTA is a system that facilitates the users to manage Subjects,
Objects and Actions. It also facilitates the users to manage the Conditions/Predicates,
and Policies. Systems reveals to the users a proper web interface and let the users to
Save, Update, Delete and Search these manageable activates to and from database.

It is very important for user to take advantage of SANTA language. However, it is very

difficult language for simple user to use because it uses the ITL (interval temporal logic).

Therefore, this system enables users to create their policies without the need of
understanding the ITL.
It was used finite state machine and JFLAB tool to model each part of the system. Itis

very beneficial to test the mobility of the system. In addition, the system was evaluated

by using the questionnaire method to obtain the feedback from users. Hence the results

were satisfactory as users were able to use the system easily and adapted very quickly to

the system.

8-2- Future Work

The system can be enhanced further by allowing the user to generate a correct code in
Tempura that corresponds to his policy. This code will be simulated using SPAT tool
and in same time it can be executed by using a run-time verification tool called
Tempura. In addition, the system can be improved by letting the user generate the XML
code that corresponds to his policy.
Furthermore, in terms of improvement required in the design of the system as gathered
from the questionnaire, there is couple of options to consider for future designs
undertakings. These are summarized below:
e Make the GUI cosmetics more prominent by considering all aspects of look and
feel of website. This would be done by using a dedicated designing tool.
Making assure the non-functional requirements of the system. Proper

considerations for making the system reliable, available and durable.

http://www.tcpdf.org

0‘>‘.f

4

inghigll yla

DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

A web-based policy editor for SANTA 1Ulgusll

Al Mutairi, Abd Algder ooyl @laoll

Siewe, Francois(Supervisor) VICY IOVPY 73

2009 oS> Maodl 2o,

Leicester 1890

1-105 1olxaall

687206 :MD 3,

&zol> Jlw, rSgizall g9

English :axlll

iow>lo allw, ragolell as)all

De Montfort University a0l

Faculty of Computing Sciences and Engineering ra sl
Lslay :aJgll

Dissertations 1logleoll aclgd

2wl) (o, Y (Oleeo sl dwiid silogleoll oVl :&olgo
https://search.mandumah.com/Record/687206 ol

abbgazo gzl gro> anslaiall ls 2019 ©

plaziwl bsloll 03s aclb ol Jsozi cliSey .abgazo ,inidl Sgi> grax 0l lale ouinidl Bsi> wlol go gsall SwYl sle sly aslio 83lo)l 0is
oI o il (9> Clal oo osdas gy e 0o (o SVl 35l ol iVl g8lgn Jio) aliaws ST uc il ol Juomeill of Gramill ginug s szl

ol Lalu Zyl_ﬂbl

aoglaioll

www.maharaa.com

https://search.mandumah.com/Record/687206

Abstract:

Security is one of the significant matters that all organizations consider when building
their system. It can protect their system against internal and external threats. Therefore,
developers understood the importance of security which leads them to consider the
security from the early stage of the system development.

The successful implementation of security can be achieved by constructing an efficient
security policy. This can help to decrease the number of the threat that result from
undesirable use of organization resources.

SANTA is language for specifying security policies such as authorization and obligation
policies. It is developed in the Software Technology Research Laboratory (STRL) at
DMU and was used to specify and analyze security policies using a run-time verification
tool called Tempura. However, the main problem that might face the non specialist users
is that they must have enough knowledge of ITL (Interval Temporal Logic) to use
SANTA language because the SANTA is based on ITL. Professional users have used the
SANTA to create and manage security policies. There exists a policy editor for SANTA
developed in Java. The use of this editor requires the users to be familiar with the
concrete syntax of SANTA. Given that SANTA language has a strong link with the ITL,
a substantial knowledge of ITL is also required. These make it difficult for non specialist
users, with limited or no knowledge in temporal logic, to use SANTA.

To make SANTA accessible also to non specialist users, I have designed and
implemented a user-friendly, graphical and web-based policy editor for SANTA. The
editor is implemented using a combination of web technologies: HTML, ASP.net and
SQL server 2005. The main functionalities of the editor include:

1- Management of subjects, objects and actions.

2- Management of conditions.

3- Management of policy rules.

4- Management of simple policies.

5- Management of compound policies.

http://www.tcpdf.org

0‘>‘.f

4

inghigll yla

DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

A web-based policy editor for SANTA 1Ulgusll

Al Mutairi, Abd Algder ooyl @laoll

Siewe, Francois(Supervisor) VICY IOVPY 73

2009 oS> Maodl 2o,

Leicester 1890

1-105 1olxaall

687206 :MD 3,

&zol> Jlw, rSgizall g9

English :axlll

iow>lo allw, ragolell as)all

De Montfort University a0l

Faculty of Computing Sciences and Engineering ra sl
Lslay :aJgll

Dissertations 1logleoll aclgd

2wl) (o, Y (Oleeo sl dwiid silogleoll oVl :&olgo
https://search.mandumah.com/Record/687206 ol

abbgazo gzl gro> anslaiall ls 2019 ©

plaziwl bsloll 03s aclb ol Jsozi cliSey .abgazo ,inidl Sgi> grax 0l lale ouinidl Bsi> wlol go gsall SwYl sle sly aslio 83lo)l 0is
oI o il (9> Clal oo osdas gy e 0o (o SVl 35l ol iVl g8lgn Jio) aliaws ST uc il ol Juomeill of Gramill ginug s szl

ol Lalu Zyl_ﬂbl

aoglaioll

www.maharaa.com

https://search.mandumah.com/Record/687206

Table of Content

Acknowledgements
Abstract
Table of Content
Chapter 1: Introduction
1-1 Motivation
1-2 Original Contribution
1-3 Objective
1-4 Methodology to reach the Project
1-5 Project Planning
1-6 Resource of the Project
1-7 Tools and Technologies Used
1-8 Dissertation Outline
Chapter 2: Literature Review
2-1 Overview
2-2 Security Requirements
2-3 The Fundamental Components
2-3-1 Confidentiality
2-3-2 Integrity
2-3-2-1 Prevention Mechanisms

2-3-2-2 Detection Mechanisms

2-3-3 Availability

2-4 Security Policy
2-4-1 Definition
2-4-2 Security Model
2-4-2-1 Overview
2-4-2-2 Bell-LaPadula Policy Model
2-4-2-3 Clark-Wilson Model
2-4-2-4 Chinese Wall Model
2-5 Security Policy Language
2-5-1 Overview
2-5-2 High-Level Policy Languages
2-5-3 Low-Level Policy Languages
2-6 Policy Management
2-7 Repudiation
2-8 Development of Security Policy
2-9 Security Policy Violation
2-9-1 Interception

2-9-2 Modificatior/Iteration

2-9-3 Masquerading/Spoofing

2-9-4 Interruption

2-9-5 Fabrications

Chapter 3: SANTA Language
3-1 Overview

3-2 Definition

3-3 Policies in SANTA

3-4- Syntax of SANTA Policy
3-4-1- Simple Condition
3-4-2-Compound Condition
3-4-3-Policy Rule

3-4-3-1 Authorization

3-4-4 Simple Policy
3-4-5- Compound Policy
3-4-6-Delegation
3-4-7- Obligation
3-4-8- Types of Policies in SANTA
3-6- Policy Specification
3-7-Policy Composition

3-9 Summary

Chapter 4: Modelling of The System By (FSM)

4-1 Introduction

4-2 Definition

4-3 JFLAP

4-4 Design Model of States
4-5 Testing the State Machine

4-6 Summary

Chapter 5: Requirements, Analysis and Design

5-1 Overview
5-2 Problem Domain Requirements
5-3 System Requirements
5-4 UML Diagrams
5-4-1 Use Case Diagram
5-4-2 Class Diagram
5-4-3 Sequence Diagram
5-5 Flow Chart of the System
5-6 Summary
Chapter 6: Implementation
6-1 Overview
6-2 System Requirements (Client Side)
6-3 System Requirements (Server Side)
6-4 Building/Compiling the System
6-5 Running the System
6-6 The System Screens Shots

6-7 Summary

Chapter 7: Testing and Evaluation
7-1 Overview
7-2 Black Box Testing
7-3 White Box Testing
7-4 Functional Testing
7-5 Acceptance Testing
7-6 Evaluation

7-6-1 Design of the System (GUI)

7-6-2 Functionality According to Requirements Specification

7-6-3 Ease of Understanding of the System

7-7 Summary

Chapter 8: Conclusion and Future Work
8-1 Conclusion
8-2 Future Work

References

List of Figure and Table

Figure 1: Information Security Aspects

Figure 2: Basic Model of (FSM)

Figure 3: Simple Condition Model (FSM)

Figure 4: Compound Condition Model (FSM)
Figure 5: Policy Rule Model (FSM)

Figure 6: Simple Policy Model (FSM)

Figure 7: Compound Policy1Model (FSM)

Figure 8: Compound Policy2 Model (FSM)

Figure 9: Subject and Object Model (FSM)

Figure 10: Action Model (FSM)

Figure 11: Simple Condition Model Test

Figure 12: Compound Condition Model Test
Figure 13: Action Model Test

Figure 14: System Level

Figure 15: Action Use Case Diagram

Figure 16: Subject Use Case Diagram

Figure 17: Object Use Case Diagram

Figure 18: Policy Rule Use Case Diagram

Figure 19: Simple Policy Use Case Diagram
Figure 20: Compound Policyl Use Case Diagram
Figure 21: Compound Policy2 Use Case Diagram
Figure 22: Simple Condition Use Case Diagram
Figure 23: Compound Condition Use Case Diagram
Figure 24: System Class Diagram

Figure 25: Functionality of Action Diagram

Figure 26: Functionality of Subject Diagram
Figure 27: Functionality of Object Diagram

Figure 28: Functionality of Policy Rule Diagram
Figure 29: Functionality of Simple Policy Diagram
Figure 30: Functionality of Compound Policyl Diagram
Figure 31: Functionality of Compound policy 2Diagram
Figure 32: Functionality of Simple Condition Diagram
Figure 33: Functionality of Compound Condition Diagram
Figure 34: Flow Chart for the System

Figure 35: Client View of System Screen

Figure 36: Compiling the System Screen

Figure 37: Running the System Screen

Figure 38: Main Page Screen

Figure 39: Subject Screen

Figure 40: Object Screen

Figure 41: Action Screen

Figure 42: Policy Rule Screen

Figure 43: Simple Policy Screen

Figure 44: Compound Policyl Screen

Figure 45: Compound policy2 Screen

Figure 46: Simple Condition Screen

Figure 47: Compound Condition Screen

Figure 48: View All Screen

Figure 49: FAQs Screen

Figure 50: Site Map Screen

Figure 51: Contact Us Screen

Table 1: Project Plan

Table 2: Test Case

http://www.tcpdf.org

0‘>‘.f

4

inghigll yla

DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

A web-based policy editor for SANTA 1Ulgusll

Al Mutairi, Abd Algder ooyl @laoll

Siewe, Francois(Supervisor) VICY IOVPY 73

2009 oS> Maodl 2o,

Leicester 1890

1-105 1olxaall

687206 :MD 3,

&zol> Jlw, rSgizall g9

English :axlll

iow>lo allw, ragolell as)all

De Montfort University a0l

Faculty of Computing Sciences and Engineering ra sl
Lslay :aJgll

Dissertations 1logleoll aclgd

2wl) (o, Y (Oleeo sl dwiid silogleoll oVl :&olgo
https://search.mandumah.com/Record/687206 ol

abbgazo gzl gro> anslaiall ls 2019 ©

plaziwl bsloll 03s aclb ol Jsozi cliSey .abgazo ,inidl Sgi> grax 0l lale ouinidl Bsi> wlol go gsall SwYl sle sly aslio 83lo)l 0is
oI o il (9> Clal oo osdas gy e 0o (o SVl 35l ol iVl g8lgn Jio) aliaws ST uc il ol Juomeill of Gramill ginug s szl

ol Lalu Zyl_ﬂbl

aoglaioll

www.maharaa.com

https://search.mandumah.com/Record/687206

A Web-based Policy Editor for
SANTA

MSC _SOFTWARE ENGINEERING
COMP5314

Dissertation

SUPERVISED BY Francois Siewe
Done by Abdugder Almutairi

P06005561

2009
DeMontfort
university

Acknowledgements

Firstly, I am grateful to Allah for giving me the strength and courage and for enabling

me complete this dissertation.

I thank my project supervisor Dr Francois Siewe for all his support and guidance during

the course of writing this dissertation.
I also thank Prof. Zedan for his help during my dissertation.

[also thank the second supervisor Dr Helge T. Janicke for his help during my

dissertation.
I thank all staff in DMU and STRL who helps me to finish my dissertation.

I thank my entire family for their support, encouragement and during my MSc course

especially my parents.

Finally, I would like to special thank my wife and my children for being patient while I
was doing my project, without their patience most of these work wouldn’t have been

accomplished.

Abstract:

Security is one of the significant matters that all organizations consider when building
their system. It can protect their system against internal and external threats. Therefore,
developers understood the importance of security which leads them to consider the
security from the early stage of the system development.

The successful implementation of security can be achieved by constructing an efficient
security policy. This can help to decrease the number of the threat that result from
undesirable use of organization resources.

SANTA is language for specifying security policies such as authorization and obligation
policies. It is developed in the Software Technology Research Laboratory (STRL) at
DMU and was used to specify and analyze security policies using a run-time verification
tool called Tempura. However, the main problem that might face the non specialist users
is that they must have enough knowledge of ITL (Interval Temporal Logic) to use
SANTA language because the SANTA is based on ITL. Professional users have used the
SANTA to create and manage security policies. There exists a policy editor for SANTA
developed in Java. The use of this editor requires the users to be familiar with the
concrete syntax of SANTA. Given that SANTA language has a strong link with the ITL,
a substantial knowledge of ITL is also required. These make it difficult for non specialist
users, with limited or no knowledge in temporal logic, to use SANTA.

To make SANTA accessible also to non specialist users, I have designed and
implemented a user-friendly, graphical and web-based policy editor for SANTA. The
editor is implemented using a combination of web technologies: HTML, ASP.net and
SQL server 2005. The main functionalities of the editor include:

1- Management of subjects, objects and actions.

2- Management of conditions.

3- Management of policy rules.

4- Management of simple policies.

5- Management of compound policies.

Table of Content

Acknowledgements
Abstract
Table of Content
Chapter 1: Introduction
1-1 Motivation
1-2 Original Contribution
1-3 Objective
1-4 Methodology to reach the Project
1-5 Project Planning
1-6 Resource of the Project
1-7 Tools and Technologies Used
1-8 Dissertation Outline
Chapter 2: Literature Review
2-1 Overview
2-2 Security Requirements
2-3 The Fundamental Components
2-3-1 Confidentiality
2-3-2 Integrity
2-3-2-1 Prevention Mechanisms

2-3-2-2 Detection Mechanisms

2-3-3 Availability

2-4 Security Policy
2-4-1 Definition
2-4-2 Security Model
2-4-2-1 Overview
2-4-2-2 Bell-LaPadula Policy Model
2-4-2-3 Clark-Wilson Model
2-4-2-4 Chinese Wall Model
2-5 Security Policy Language
2-5-1 Overview
2-5-2 High-Level Policy Languages
2-5-3 Low-Level Policy Languages
2-6 Policy Management
2-7 Repudiation
2-8 Development of Security Policy
2-9 Security Policy Violation
2-9-1 Interception

2-9-2 Modificatior/Iteration

2-9-3 Masquerading/Spoofing

2-9-4 Interruption

2-9-5 Fabrications

Chapter 3: SANTA Language
3-1 Overview

3-2 Definition

3-3 Policies in SANTA

3-4- Syntax of SANTA Policy
3-4-1- Simple Condition
3-4-2-Compound Condition
3-4-3-Policy Rule

3-4-3-1 Authorization

3-4-4 Simple Policy
3-4-5- Compound Policy
3-4-6-Delegation
3-4-7- Obligation
3-4-8- Types of Policies in SANTA
3-6- Policy Specification
3-7-Policy Composition

3-9 Summary

Chapter 4: Modelling of The System By (FSM)

4-1 Introduction

4-2 Definition

4-3 JFLAP

4-4 Design Model of States
4-5 Testing the State Machine

4-6 Summary

Chapter 5: Requirements, Analysis and Design

5-1 Overview
5-2 Problem Domain Requirements
5-3 System Requirements
5-4 UML Diagrams
5-4-1 Use Case Diagram
5-4-2 Class Diagram
5-4-3 Sequence Diagram
5-5 Flow Chart of the System
5-6 Summary
Chapter 6: Implementation
6-1 Overview
6-2 System Requirements (Client Side)
6-3 System Requirements (Server Side)
6-4 Building/Compiling the System
6-5 Running the System
6-6 The System Screens Shots

6-7 Summary

Chapter 7: Testing and Evaluation
7-1 Overview
7-2 Black Box Testing
7-3 White Box Testing
7-4 Functional Testing
7-5 Acceptance Testing
7-6 Evaluation

7-6-1 Design of the System (GUI)

7-6-2 Functionality According to Requirements Specification

7-6-3 Ease of Understanding of the System

7-7 Summary

Chapter 8: Conclusion and Future Work
8-1 Conclusion
8-2 Future Work

References

List of Figure and Table

Figure 1: Information Security Aspects

Figure 2: Basic Model of (FSM)

Figure 3: Simple Condition Model (FSM)

Figure 4: Compound Condition Model (FSM)
Figure 5: Policy Rule Model (FSM)

Figure 6: Simple Policy Model (FSM)

Figure 7: Compound Policy1Model (FSM)

Figure 8: Compound Policy2 Model (FSM)

Figure 9: Subject and Object Model (FSM)

Figure 10: Action Model (FSM)

Figure 11: Simple Condition Model Test

Figure 12: Compound Condition Model Test
Figure 13: Action Model Test

Figure 14: System Level

Figure 15: Action Use Case Diagram

Figure 16: Subject Use Case Diagram

Figure 17: Object Use Case Diagram

Figure 18: Policy Rule Use Case Diagram

Figure 19: Simple Policy Use Case Diagram
Figure 20: Compound Policyl Use Case Diagram
Figure 21: Compound Policy2 Use Case Diagram
Figure 22: Simple Condition Use Case Diagram
Figure 23: Compound Condition Use Case Diagram
Figure 24: System Class Diagram

Figure 25: Functionality of Action Diagram

Figure 26: Functionality of Subject Diagram
Figure 27: Functionality of Object Diagram

Figure 28: Functionality of Policy Rule Diagram
Figure 29: Functionality of Simple Policy Diagram
Figure 30: Functionality of Compound Policyl Diagram
Figure 31: Functionality of Compound policy 2Diagram
Figure 32: Functionality of Simple Condition Diagram
Figure 33: Functionality of Compound Condition Diagram
Figure 34: Flow Chart for the System

Figure 35: Client View of System Screen

Figure 36: Compiling the System Screen

Figure 37: Running the System Screen

Figure 38: Main Page Screen

Figure 39: Subject Screen

Figure 40: Object Screen

Figure 41: Action Screen

Figure 42: Policy Rule Screen

Figure 43: Simple Policy Screen

Figure 44: Compound Policyl Screen

Figure 45: Compound policy2 Screen

Figure 46: Simple Condition Screen

Figure 47: Compound Condition Screen

Figure 48: View All Screen

Figure 49: FAQs Screen

Figure 50: Site Map Screen

Figure 51: Contact Us Screen

Table 1: Project Plan

Table 2: Test Case

Chapter 1: Introduction

1-1- Motivation

The expansion of the internet and networks in the world led to increase the number
of security threats and breaches. Therefore, security should be constructed in the early
stage for system development [11]. Hence, the developers are focusing on security
requirements and how to achieve three key aspects or requirements: confidentiality,

integrity and availability.

The major purpose of the security requirements is the prevention of the data resources
from threats. This is achieved by setting up constraints that define individuals permitted
access to the data assets of a system. However, confidentiality requires that only
authorized individuals are allowed to access computer system resources, whereas
integrity describes the prevention of an unofficial modification of data. Availability of

required resource or information is its ability to be used [1].

Security policy is applied as a basis of configuration and auditing of computer systems
and networks, while upholding obedience with the policy requirements. These allow
later implementation of developmental, operational guidelines and introduction of user

access monitoring regulations [6].

Security is a major issue for organisation which deals directly with internet by doing
online business or providing services. The leak of security can facilitate the increase
exposure of the threat to the internet which can cause loss or damage of the information

or equipment or threat human life in some critical system.

This project encourages me to solve the problem that result from the difficulty of using
SANTA language for non specialist user. It will deliver a friendly editor that can allow
the user to create his policy easily. This policy will be created by using SANTA

structure.

1-2- Original Contribution:

In this dissertation, I have designed and implemented a user-friendly web-based policy
editor that allows non specialist users (normal users) to create and manage security
policies in SANTA. It is a language for specifying security policies such as authorization
and obligation policies. It is developed in the Software Technology Research Laboratory
(STRL) at DMU. Policies specified in SANTA can be analyzed using a run-time
verification tool called Tempura.

This editor has different interfaces that allow the user to create simple and compound
conditions, policy rules, simple policies and compound policies and. In addition, it has
interfaces for managing subjects, objects and actions. Furthermore, it also allows the
user to conduct functionality upgrades such as modifying, deleting the existing policies
and adding new policies. All interfaces connected with database that can manage all
policies.

1-3- Objectives

There are many objectives for my project:

- It helps to become skilled at programming languages.

- It helps to understand the concept of the security requirements and security
policy.
It helps to identify the security policy language called SANTA.

It helps to apply some of my knowledge that learned from the modules.

Methodology to reach the project

In the analysis stage, the UML (Unified Modeling Language) were used to
build the structure of the software. So it helps to identify the functional and non
functional requirement. In addition, the modeling of my project was
constructed by using JFLAB tools. The ASP.net software with SQL server
2005 was used to implement the project because I found it to be suitable
software that has several features. In the later stage Black and white test

method were used.

Project Planning Table

It is important for me to organize my work from the early stage until the final

stage. So it helps me to finish the project on time.

D Task Name Start

Finish

Duration

Choose Topic and approval | 25/05/09

by supervisors

1/06/09

1w

Literature review 2/06/09

2/07/09

Analysis And Design 3/07/09

24/07/09

implementation and testing | 75 /07 /09

3/09/09

Writing up and Submission 25/05/09

3/09/09

Table 1: Project Plan

Resource of the Project

In this project, we used academic paper, books and internet to complete my literature

review on this subject area like “Computer Security” for Matt Bishop and supervisor

PHD thesis. ASP.net and SQL 2005 software were used to implement the project.

1-7-Tools and Technologies Used

Policy Editor for SANTA is a basic user-friendly system to facilitate the non —specialist

users to perform the intended activities. System has been developed on the Microsoft

Platform using the following tools and technologies.

o Visual Studio 2008 as development tool.
e Microsoft .Net Framework 3.5 as development framework.
C# as a language.
SQL Server Management Studio as Database Tool.
SQL Server 2005 as Database Server.
Rational Rose as Designing Tool.

1-8 Dissertation Outline

In Chapter 2, I provide a comprehensive literature review about security requirements
and security policy. It provided the definition of a security policy and security
requirements. In addition I give an overview of policy models and policy languages. In

the final part of the chapter, I present security threats.

In Chapter 3, I identify relevant components of the SANTA policy language. SANTA is

a language for specifying security policies such as authorization and obligation policies.

In Chapter 4, I present the Finite State Machine model of the system, designed using
JFLAB tools.

In Chapter 5, I analyze and design a user-friendly web-based policy editor. This allows

non specialist users (normal users) to create and manage security policies in SANTA.

In Chapter 6, I implement a user-friendly web-based policy editor that allows non

specialist users (normal users) to create and manage security policies in SANTA.
In Chapter 7, I test and evaluate the system as whole.

In Chapter 8; the final chapter, I propose conclusions of this dissertation and also

provide recommendations for future work on the topic.

Chapter 2: Literature Review

2-1- Overview

This chapter presents an overview of some significant writings on security requirements

and security policy.
2-2- Security Requirements

The main objective of the security requirements are to safe-guard the information
data against potential risks. They usually provided as a mean of permitting
access to an organization’s system resources, whilst setting out a user guidelines
for various individuals who have permission to access the system and their

limitations of use [1].

2-3- The fundamental Components

The integral components of computer security comprises of confidentiality,
integrity and availability. These features are different in their characterization
from one another. They also vary in the framework each aspect is applied.
However, individual requirements, customs and laws of a specific organization
determine the interpretation of the aspect in that particular context or

environment [1].

2-3-1- Confidentiality

Confidentiality is defined as “the concealment of information or resources” [1].
The application of computer in sensitive environments (for e.g. government and
industry) has necessitated the undisclosed use of information. For instance,
revealing the exact statistic of people who have doubts about politicians is not as
significance as revealing that the poll itself was carried out by a subordinate of
the politicians, hence concealing resources is a feature of confidentiality. Several
website hide their application system and configuration as well as organization

may conceal certain equipment they use [1].

13

2-3-2- Integrity

Integrity defines the reliability of the data assets. It is usually designed in

such a way to avoid misuse of an organization’s data resources or unofficial

alterations to the system. Usually, integrity incorporates both data (the
content of the information) and origin (the data source) integrity. The latter is
commonly known as authentication. The individual user rating and
confidence on the information is the underlying measure for the accuracy and
credibility of the source of the information. “This dichotomy illustrates the
principle that the aspect of integrity known as credibility is central to the

proper functioning of a system” [1].

Integrity mechanisms fall into two classes:
2-3-2-1- Prevention Mechanisms

This method makes sure unauthorized efforts to alter data resources are
prevented so as to retain the integrity of the information. The process also
blocks any activity that can lead to alterations of the data resources in an
unauthorized manner. However, it’s important to understand the difference
between the two forms of attempts. The first attempt is applicable when an
individual who has no official permission attempts to change information,
whereas the second one happens to deny permitted user from executing

certain alteration beyond his jurisdiction [1].

2-3-2-2- Detection Mechanisms

The detection mechanisms basically report when the information integrity
cannot be trusted any more. Unlike the prevention mechanisms, the detection
mechanisms do not attempt to block violation of integrity. However, it
examines sequence of the system events in order to identify the problem. At
the same time, it may check the data information to detect whether required

or expected restrictions are still in place. These mechanisms could give detail

of the possible cause of the integrity violation. In some cases declares the file

for being corrupted [1].
2-3-3- Availability

Availability of required resource or information is its ability to be used. This
is a significant requirement of reliability and system design, as inaccessible
system is no different to lack of the system in any ways. The organization
may decide to make the data unavailable or consciously prevent the
information access which is an aspect of availability. This phenomenon is
vital to maintaining the computer security. The designed system normally
assumes a statistic model in order probe expected pattern of use. This is vital
to availability, as it guarantees availability of the data when specifications of
the statistical model are met. However, an individual could be capable to
influence the access, hence rendering invalid assumptions by the model.
This therefore, causes failure of the system, as the method allowing

availability of the data resources are operating outside its prescribed context

[1].

Confidentiality

Information
Security
Aspects

Availability Integrity

Figure 1: Information Security Aspects (adopted from: Russell and Gangemi, 1991)[12].

2-4- Security Policy

2-4-1- Definition
A security policy defines specified rules and regulation set to ensure communication is
maintained between the staff managing the system and individual user. Security policy
is expected to interpret and verify primary security. Hence security policy acts as link
between the management’s objective and the security requirement of the users [6].

2-4-2- Security Policy Models

2-4-2-1- Overview
A company's security policy models summarize statements of how organizational

assets and properties are to be protracted, typically written in one page or less.
Organizations typically state their protection goals of various systems as agreed by the
senior executive management and hence functions as the basis of guidance of do and
don’ts with regards to protection and maintenance of systems, assets and other sensitive
organizational properties that are susceptible to compromise.

There are different security models adopted by different organizations, each has merits
and demerits and sometimes related to protection of assets on a specific industry. Below
is a summary of some for the leading and popular models in the security policy [4].

2-4-2-2- Bell-LaPadula Policy Model

This model was adopted as a result of a research work conducted by David Elliott Bell
and Leonard J. La Padula in the 1970s. This security model is an access control that uses
formal and mathematical description approach to explicitly denote how a security should
be maintained, by using some sort of comparison to determine an access right based on
the authorization level of the requested and the level of access authorized on the object.

There was a widespread realization that protection of commercial operating systems was

poor, bugs and system vulnerabilities kept being discovered on commercial systems as

soon as one is fixed. As a result, US government introduces a reference monitor concept
and this was adopted as a result of a study conducted by James Anderson who concluded
that protection of secure systems and properties should be enforced by using a simplified
verifiable mechanism that rarely change. Reference monitor is part of Trusted
Computing Base (TCB). TCB is a set interrelated hardware, software human
components that together ensures enforcement of a security policy failure of which

causes a breach of security policy [6].

2-4-2-3- Clark-Wilson Model

This security policy model is widely used in commercial environments to primarily
ensure integrity of organizational data and prevent corruption of data due to error or
malicious intent. It was proposed by David D. Clark and David R. Wilson in 1987. The
policy clearly defines how organizational data should be kept securely with data
integrity intact. It distils centuries old double-entry bookkeeping method which tends to
mitigate insider fraud and ensure integrity of bank’s accounting system. By posting each
transaction to two different books namely Credit and Debit (assets and liabilities
respectively), the accounting book should balance anytime a reconciliation is done. This
ensures information integrity. Enforcing this policy entails principle of splitting job
responsibilities to more than one staff and hence any potential fraud may requires
collusion of two or more staff [6].

2-4-2-4- Chinese Wall Model

Is a popular security model proposed by Brewer and Nash in 1989.This policy tends to
prevent flow of information in situation where conflict of interest is prevalent. This
policy is widely used by professional consultants and investment bankers to build a
virtual wall that separates the control the flow of information in order to avoid a conflict
of interest or insider trading in a financial setup. For example, a conflict of interest arises
here of an individual consults for two companies of same industry, particularly in a
financial sector, as soon as a consultant interacted with two companies of same time
business line. A closed ‘Chinese Wall’ is erected once an individual consulted for

companies of same industry type and hence avoids conflict of interest on the job [6].

17

2-5- Security Policy language
2-5-1- Overview

This is the language that represents the security policy. The security policy languages
are categorized into two groups; High-level policy language and Low-policy language.

2-5-2- High-Level Policy Languages

These refer to the restrictions imposed on the system’s entities and commands which

provide defined terms of the security policy. The accuracy of such expression demands

formulation mathematical model of the security where ordinary English could not be

applied [1].

2-5-3- Low-Level Policy Languages

A low-level policy language refers to a collection of inputs, argument to command those

inputs and to verify the limitations on the system [1].

2-6-Policy Management

Customary reviews have to be employed in order to make sure the security policy is up
to date. This may be executed in such a way that the organization’s operation systems
are directly translated into the security policy.

It was suggested that a special unit such as data security unit be assigned to administer
the security policy. The unit would be in charge of performing expected reviews and

keeping the security policy up to dated [6].

Killmeyer (2006) outlined the duty of security management. He stated the security
management should provide direction and put procedures in place to control and
minimize the risk of losing data and information. He also stressed that the security
management requires further security measures in order to identify the origin of all
massage coming through and their authenticity. When the messages are strictly
authenticated, that will help to reinforce security, and stop any attempt to forget

identities [10].

2-7-Repudiation

Killmeyer also discusses the concept of repudiation. Non repudiation means receiving a

proof of delivery and certification of the source. This is a method which guarantees that

the sender cannot later deny that he/she has sent the message and also the recipient
cannot refuse that he/she has received the message. This is an alternative way to manage
and apply security by monitoring the messages going through the networking
system[10].

2-8-Development of security policy

Security policy is significant in ensuring efficient and understandable security systems
are created. Although the essential nature of developing security policy is frequently
ignored, it serves as a vital element of the computer security design. The main purpose
of the security policy is to decode the management's requirements for the security into a
simple well defined and directed to a precise targets or objectives. Using a top down
method is essential to derive an efficient and well developed overall security
architecture. In the other hand, lack of security policy to relay the management's
expectations will result in such decisions being made directly by individual users.
Therefore significant operations such as installation and maintaining the computer
system will be left in the hands of the individual users to be made. These consequently
would lead to the implementation of an ineffective computer security systems or

architecture [6].

2-9-Security policy violation

Violation of the security policy is a very serious threat to an organization’s data assets.
The violation may not necessarily take place in order to pose a risk at an organization’s
security resources. However it’s essential to protect against those activities that may lead
to the security violation. The actions that cause violation are commonly known as

attacks which are usually carried out by attackers [2].

2-9-1-Interception

Interception is an unlawful disclosure of information which is a serious breach and a

risk to confidentiality. This is mostly carried out through passive wiretapping which

happens when listening to certain entity, reading or browsing files or systems

information. The threat is also referred to as snooping or eavesdropping [2].

2-9-2-Modification/Alteration:

This is an unlawful alteration of the data security assets which is a threat to the data
reliability. As opposed to interception, modification is an active form of violation. This
might be achieved by active wiretapping, which is an alteration that influences the
nature of data communication between networks. A typical example is the man in
middle attack where an intruder monitors and reads information from sender and then
sends a modified edition to the recipient. I most cases, the presence of a third-party is

not felt by the either the sender or the reader [2].

2-9-3- Masquerading/Spoofing

Another threat to the data security reliability includes the violation such as
masquerading or spoofing, which involves masquerade of an individual by another
person. In this case, the violators disguise the true identity of the service from the

individuals at the receiving end so as to entice him accepts a particular entity [2].

2-9-4- Interruption

Threats to the data availability include a form of infringements such as “interruption”.
This mainly takes place in a form of an unlawful denial of users’ access into specific

data resource. A common example is revealed when an intruder influences the server

performing its service; a breach known as the denial-of-service attack. The attackers

accomplish this through various mechanisms such as denial at the source which stops
the server from receiving the information supply. These data resources are required for
effective function of the server at its local environment thus hindering information
transmission via the server across networks. The denial may also occur on the route of
the intermediate pathway thereby getting rid of the information from the server or the

client or influencing both of them [2].

2-9.5-Fabrications

Fabrications are another form of violation which compromises the security integrity.
These involve assembly of forged resources or unlawful addition of information. A
common example is the insertion of false information in a network [2].

However, the staffs are required to develop complete understanding and knowledge of
the costs of the policy violation, so as to be able to appreciate the significance of the

security policy.

Security policy violation is a serious threat to an organization’s corporate systems and
should be dealt appropriately. Staff or individuals who violated the policy must be
notified about their action and cautioned to face penalty. These may be done by placing
them on a “trial period” by allowing them access only limited resources until they
demonstrate competency to utilize the organization information in a safe way and
comply with the security policy when using the corporate systems. In a more serious
case of violation, the violator should be warned of being sacked or getting prosecuted.
Although the latter punishment may seem to be too much, reasonable step has to be
taken in any case of violation following the terms or guidelines as outlined in the AUP
and the policy. However, the main concentration should be on maintaining the security
rather than just the punishment for the violation. Without this, it would be difficult to
penetrate which might be as a result of human mistake or misinterpretation of the

security policy [5].

Chapter 3: SANTA Language

3-1- Overview

The chapter introduces a security policy language commonly known as the

SANTA. We would also look into the policy in SANTA by unfolding the

authorization, obligation and delegation.

3-2- Definition

SANTA (Security Analysis Toolkit for Agent) is language for specifying security

policies such as authorisation and obligation policies. SANTA is developed in the
Software Technology Research Laboratory (STRL) at DMU and is used to specify and

analyse security policies using a run-time verification tool called Tempura.

)
3-3-Policies in SANTA

A security policy in SANTA is based on the notion of subject, object and action.
A subject is assumed to be an active entity that can perform an action on an object or
another subject. Examples of subject are users, processes or agents running on behalf of
users. An object is a passive entity that stores some data, ¢.g. a file, a storage device ora
profile. An action is an operation that can be performed on objects or subjects, e.g. read

a file, append to a file, withdraw money from a bank account and so on.

3-4- Syntax of SANTA Policy

3-4-1- Simple Condition
The syntax of the simple condition is that
< cond > ::=<expl ><rop><exp2 > relational conditions

<rop>:==|>|<|<|2

relational operators

<exp>:u= <var> variable symbols
|< const > constant symbols such as true, false, 0, 1, 2
|- <exp> unary minus
| (<exp>) parentheses
l< expl ><aop ><exp2> binary arithmetic operations
<aop> =+ |-|*|/ arithmetic operators

22

Example of simple conditions:
e x=5
o x+y>-1
e 2*(x+3)<0

3-4-2- Compound Condition
The syntax of the Compound condition is that

< Ccond > ::=<cond > simple condition
| < Ccondl > " < Ccond2 > conjunction
| < Ccondl >v < Ccond2 > disjunction
|~ <Ccond > negation
| (< Ccond >) parentheses

Example of compound conditions:
e x=5
e (x+y>-)"—(x<0)

3-4-3- Policy Rule

3-4-3-1- Authorization Rule

This rule specifies access control measures. Authorization involves three types
of rules namely positive authorization, negative authorization and decision

rules[3].

Positive Authorization

These are declarations that express specific conditions under which specific
summon for access could be tolerated. However, as far as ultimate decision of
the policy for the right of system entry is concemed, only the signal is the taken
into consideration [3].

A positive authorization rule has the form

f —— autho+(X,Y,Z)

The letter f represents ITL formula in this syntax. X,Y,Z represent subject, object and

action respectively. The rule expresses that the subject X is clearly granted to carry out

23

http://www.tcpdf.org

0‘>‘.f

4

inghigll yla

DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

A web-based policy editor for SANTA 1Ulgusll

Al Mutairi, Abd Algder ooyl @laoll

Siewe, Francois(Supervisor) VICY IOVPY 73

2009 oS> Maodl 2o,

Leicester 1890

1-105 1olxaall

687206 :MD 3,

&zol> Jlw, rSgizall g9

English :axlll

iow>lo allw, ragolell as)all

De Montfort University a0l

Faculty of Computing Sciences and Engineering ra sl
Lslay :aJgll

Dissertations 1logleoll aclgd

2wl) (o, Y (Oleeo sl dwiid silogleoll oVl :&olgo
https://search.mandumah.com/Record/687206 ol

abbgazo gzl gro> anslaiall ls 2019 ©

plaziwl bsloll 03s aclb ol Jsozi cliSey .abgazo ,inidl Sgi> grax 0l lale ouinidl Bsi> wlol go gsall SwYl sle sly aslio 83lo)l 0is
oI o il (9> Clal oo osdas gy e 0o (o SVl 35l ol iVl g8lgn Jio) aliaws ST uc il ol Juomeill of Gramill ginug s szl

ol Lalu Zyl_ﬂbl

aoglaioll

www.maharaa.com

https://search.mandumah.com/Record/687206

References

Bishop, M, (2003), “Computer Security Art and Science”, Addison- Wesley.
Siewe, F (2005), “A Compositional Framework for the Development of Secure

Access Control System”, PHD Thesis, DMU university.

Janick, H, (2007), “The Development of Secure Multi-Agent System ”PHD

Thesis, DMU university.

Anderson, R and Stajano,'F, » Security Policies” Paper , Available online

http://www.cl.cam.ac.uk/~rjal4/ Papers/security-policies.pdf

Danchev, D, (2003), “Building and Implementing A successful Information
Security Policy” Paper, Available online

http://www.infosecwriters.com/text_resources/pdf/Security Policy JPak.pdf

Weise, J, (2001) “ Developing A security Policy” Available online

http://www.sun.com/blueprints/1201/secpolicy.pdf

Bilung,Lee and Edward,A.Lee “Interaction of Finite State Machines and
Concurreney Models”, University of Culifomiu ut Berkeley.

Susan H, Rodger, Jinghui Lim, Stephen Reading “Increasing Interaction and
Support in the Formal Languages and Automata T heory Course”.

9- http://www.tech.dmu.ac.uk/STRL/research/software/index.html#SANTA

10-Kilmeyer, J. (2006) “Information Security Architecture An Integrated Approach
to Security in the Organization”. Boca Raton New York: Auerbach Publication.
11-Sindell, K.(2002), “Safety Net Protecting Your Business On the Interne 7. New

York: John Wiley & Sons, Inc.

12- Russell, D. and Gangemi, G. T. (1991), “Computer Security Basics

Cambridge: O’Reilly & Associates, Inc.

13- Sommerville, 1. (2007). “Software Engineering”.
14- Lano et al. (2002,25). “Design Process”.

15- http://www.issco.unige.ch/en/research/projects/ ewg95//mode108 . html.

105

http://www.tcpdf.org

0‘>‘.f

4

inghigll yla

DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

A web-based policy editor for SANTA 1Ulgusll

Al Mutairi, Abd Algder ooyl @laoll

Siewe, Francois(Supervisor) VICY IOVPY 73

2009 oS> Maodl 2o,

Leicester 1890

1-105 1olxaall

687206 :MD 3,

&zol> Jlw, rSgizall g9

English :axlll

iow>lo allw, ragolell as)all

De Montfort University a0l

Faculty of Computing Sciences and Engineering ra sl
Lslay :aJgll

Dissertations 1logleoll aclgd

2wl) (o, Y (Oleeo sl dwiid silogleoll oVl :&olgo
https://search.mandumah.com/Record/687206 ol

abbgazo gzl gro> anslaiall ls 2019 ©

plaziwl bsloll 03s aclb ol Jsozi cliSey .abgazo ,inidl Sgi> grax 0l lale ouinidl Bsi> wlol go gsall SwYl sle sly aslio 83lo)l 0is
oI o il (9> Clal oo osdas gy e 0o (o SVl 35l ol iVl g8lgn Jio) aliaws ST uc il ol Juomeill of Gramill ginug s szl

ol Lalu Zyl_ﬂbl

aoglaioll

www.maharaa.com

https://search.mandumah.com/Record/687206

A Web-based Policy Editor for
SANTA

MSC _SOFTWARE ENGINEERING
COMP5314

Dissertation

SUPERVISED BY Francois Siewe
Done by Abdugder Almutairi

P06005561

2009
DeMontfort
university

http://www.tcpdf.org

